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We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian

external spacetime. The black hole’s gravity is described accurately to all orders in Gm=c2r, where m is

the black-hole mass and r is the distance to the black hole. The tidal perturbation created by the external

environment is treated as a small perturbation. At a large distance from the black hole, the gravitational

field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by

the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a

monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of

each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The

matching procedure produces (i) a justification of the statement that a nonrotating black hole is a post-

Newtonian monopole; (ii) a complete characterization of the coordinate transformation between the

inertial, barycentric frame and the accelerated, black-hole frame; (iii) the equations of motion for the

black hole; and (iv) the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first

calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the

post-Newtonian environment; this could contain a continuous distribution of matter (so as to model a

galactic core) or any number of condensed bodies. We next specialize our discussion to a situation in

which the black hole is a member of a post-Newtonian two-body system. As an application of our results,

we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole,

the rate at which it acquires mass as a result of its tidal interaction with the companion body.
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I. INTRODUCTION AND SUMMARY

A. This work and its context

How does a black hole move in an external spacetime,
and what effects do the tidal fields created in the external
spacetime have on the black hole? These are the questions
that are investigated in this work, in a context in which the
black hole is nonrotating and the gravity of the external
universe is sufficiently weak to be adequately described by
the post-Newtonian approximation to general relativity.
This work is a continuation of a line of inquiry that was
initiated by Manasse [1] in the early nineteen sixties, and
that has been pursued to the present day.

To pose our questions more precisely, and to better
discuss the place of this work in the context of what was
achieved previously, we introduce two length scales that
are relevant to this problem. The first is set by m, the mass
of the black hole, which gives rise to an associated length
scale M :¼ Gm=c2, the gravitational radius of the black
hole. The second is R, the radius of curvature of the
external spacetime, evaluated at the black hole’s position.
Our work, and all others that preceded it, is carried out in a
context in which M=R � 1, so that there is a clean
separation between these scales. Only in this context can
one meaningfully speak of a black hole moving in an
external spacetime; when M is comparable to R, no dis-
tinction can be made between the ‘‘black hole’’ and the
‘‘external spacetime.’’

As a concrete example we may consider a situation in
which the black hole is a member of a binary system. Then

R� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3=Mtot

p
, where b is the separation between the

bodies andMtot :¼ Gðmþm0Þ=c2 is a measure of the total
mass within the system (m0 is the external mass). In this
case we have

M

R
� M

Mtot

�
Mtot

b

�
3=2
;

and for this work, this is required to be small. There are two
particular ways to achieve this. In the small-hole approxi-
mation the black-hole mass is assumed to be much smaller
than the external mass, so thatM=Mtot �m=m0 � 1; then
M=R is small irrespective of the size of Mtot=b, and the
binary system can be strongly relativistic. In the weak-field
approximation it is Mtot=b that is assumed to be small,
while the mass ratio is left unconstrained.
Our work is concerned with the weak-field approxima-

tion. The black hole is placed within a post-Newtonian
external spacetime, and the external gravitational poten-
tials determine its motion as well as the tidal gravity acting
upon it. We determine the motion of the black hole, the
tidal fields, and the effects of the tidal fields on the structure
of spacetime around the black hole, all within the post-
Newtonian approximation to general relativity. At first, we
do not specify the nature of the post-Newtonian environ-
ment. We leave it completely general; the black hole might
be immersed within a smooth distribution of matter (a
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model for a galactic core, for example), or it might be part
of an N-body system (with the number, nature, and state of
motion of the bodies left arbitrary). As our work pro-
gresses, we specialize our results to a two-body system
undergoing generic orbital motion, and finally we examine
the special case of circular orbits.

The motion of a black hole in an arbitrary external
spacetime was first investigated by D’Eath [2–4] and
Kates [5], who showed that in the limit M=R ! 0, the
black hole moves on a geodesic of the external spacetime.
In this limit the black hole behaves as a test mass, in spite
of the fact that the self-gravity of the black hole never
ceases to be strong. The corrections to geodesic motion
produced by the coupling of the black-hole spin with the
curvature of the external spacetime were worked out by
Thorne and Hartle [6], who also obtained precession equa-
tions for the spin vector. These authors exploited the power
of matched asymptotic expansions in their derivation of the
equations of motion. In their approach, the metric of the
black hole (deformed by the conditions in the external
spacetime) is matched to the metric of the external space-
time (perturbed by the moving black hole). The matching
is carried out in a region in which both descriptions are
valid, and it produces both the equations of motion and the
tidal fields, with only the Einstein field equations as addi-
tional input. Our work is a continuation of this program.

These investigations were next specialized to systems
for which the gravity of the external spacetime is weak; this
is the context that interests us in this paper. Demianski and
Grishchuk [7] showed that to the leading order in a post-
Newtonian expansion of the external gravity, the black hole
moves according to the Newtonian equations of motion.
Their results were generalized to the first post-Newtonian
order by D’Eath [3] and Damour [8], who found agreement
between the equations of motion for black holes in binary
systems and the standard (Einstein-Infeld-Hoffman) equa-
tions of motion of post-Newtonian theory. Our work is a
continuation of this effort, and our results are slightly more
general than theirs: While our black hole is still immersed
within a post-Newtonian environment, this environment is
completely general, and the black hole is not required to be
a member of a binary system. When, however, we special-
ize our results to this particular case, we recover the results
of D’Eath and Damour.

The motion of a black hole in a post-Newtonian external
spacetime is well understood, and our contribution to this
understanding is a relatively minor one. The same cannot
be said, however, of the effects of the external tidal gravity
on the black hole, which have not been much discussed in
the literature. This is the true focus of this work, and our
main goal in this paper is to calculate the post-Newtonian
tidal fields acting on the black hole, and to explore the
physical consequences of the tidal interaction.

We are not claiming that ours is the first calculation of
post-Newtonian tidal fields acting on a self-gravitating

body. It is not. In their pioneering work on relativistic
celestial mechanics, Damour, Soffel, and Xu [9–11] calcu-
lated the post-Newtonian tidal fields acting on an
arbitrarily-structured body with weak internal gravity.
This work was recently generalized to arbitrarily-
structured, strongly-gravitating bodies by Racine and
Flanagan [12]. Our work is concerned instead with a very
specific type of strongly self-gravitating body: a nonrotat-
ing black hole. We calculate the post-Newtonian tidal
fields acting on this black hole, and observe that they are
the same as those obtained by Damour, Soffel, and Xu in
the case of weakly self-gravitating monopoles. We con-
firm, therefore, the general expectation (known as the
‘‘effacement principle’’) that the post-Newtonian tidal
fields must depend on the body’s multipole moments
only (in addition to the conditions in the external space-
time), and not on additional details concerning its internal
structure.
The effects of tidal fields on the structure of spacetime

around a black hole were first investigated by Manasse [1],
who provided an essential input to the work later carried
out by D’Eath, Kates, Thorne, and Hartle. Adopting the
small-hole approximation defined previously, Manasse cal-
culated the metric around a small black hole that falls
radially toward a much larger black hole. Each black
hole was taken to be nonrotating, and the small hole was
taken to move on a geodesic of the (unperturbed)
Schwarzschild spacetime of the large hole. The tidal grav-
ity exerted by the large black hole creates a perturbation in
the Schwarzschild metric of the small hole, and employing
the techniques of Regge and Wheeler [13], Manasse was
able to calculate this perturbation in a local neighborhood
of the black hole. His metric is expressed as an expansion
in powers of r=R, where r is the distance to the small hole;
it is accurate through the second order in r=R, and it is
valid to all orders in M=r, which measures the strength of
the small hole’s self-gravity. The case of circular motion
around a large Schwarzschild black hole was treated much
later by Poisson [14].
The methods used by Manasse are not necessarily re-

stricted to the small-hole approximation. Alvi [15,16] real-
ized that these methods could be seamlessly extended to
the general setting defined by the requirementM=R � 1,
which includes both the small-hole and weak-field approx-
imations as special cases. Alvi exploited this insight to
calculate the tidal fields acting on a black hole in a post-
Newtonian binary system (perhaps with another black
hole). In Alvi’s work, the two bodies have comparable
masses and the black hole has a significant influence on
the geometry of the external spacetime. Alvi calculated the
tidal fields to the leading (Newtonian) order in the post-
Newtonian approximation to general relativity, for circular
orbits. The metric of the distorted black hole was next
joined to the post-Newtonian two-body metric, and the
global metric was presented in a single coordinate system
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that corotates with the system. (In Alvi’s original work
there is a discontinuity in the metric at the common bound-
ary between the two descriptions. The joint was made
continuous in a follow-up paper by Yunes et al. [17]).

Alvi’s insight was exploited by Poisson [18] in a calcu-
lation of the metric of a nonrotating black hole placed
within an arbitrary tidal environment (still restricted by
M=R � 1). Working, like Manasse [1], in a local neigh-
borhood of the black hole, Poisson was able to calculate the
metric through the third order in r=R, while keeping the
expressions accurate to all orders inM=r. Poisson’s metric
is parametrized by a number of tidal moments, freely-
specifiable tensorial functions of time that characterize
the black hole’s tidal environment. This metric gives a
general description of the spacetime around a black hole
in any tidal environment, but a more complete description
requires the determination of the tidal moments. This is our
task in this paper: We calculate the tidal moments for the
specific case described above, in which the black hole is
immersed within a post-Newtonian external spacetime.
This is a generalization of Alvi’s work [15–17]; we appeal
to the weak-field approximation, we calculate the tidal
fields created by an arbitrary post-Newtonian spacetime,
and we do so to a higher order of accuracy than what was
achieved by Alvi.

B. Our results

The metric of a nonrotating black hole immersed in a
tidal environment is expressed as a perturbation of the
Schwarzschild metric. We take the black hole to have a

mass m when it is in complete isolation (unperturbed), and
we denote its gravitational radius by M :¼ Gm=c2. The
strength of the tidal perturbation is measured by the inverse
length scaleR�1, and we assume thatM=R � 1; the tidal
perturbation is weak. In addition, we assume that the black
hole moves in an empty region of spacetime, so that in the
hole’s neighborhood B, the perturbed metric satisfies the
vacuum field equations linearized about the exact
Schwarzschild solution. We present the metric in the co-
moving reference frame of the black hole, in a quasi-
Cartesian system of coordinates �x� ¼ ð �x0; �xaÞ ¼
ðc�t; �x; �y; �zÞ that enforce the harmonic conditions
@�ð ffiffiffiffiffiffiffi�gp

g��Þ ¼ 0. Our convention is that Greek indices

run from 0 to 3, while Latin indices cover the spatial
coordinates and run from 1 to 3. We raise and lower
Latin indices with the Euclidean metric �ab, and we let
�abc denote the permutation symbol of ordinary vector
calculus (with �123 ¼ �xyz ¼ 1).

The time-time and time-space components of the black-
hole metric are (Sec. III)

g�0 �0 ¼ � 1�M=�r

1þM=�r
� 1

c2
ð1�M=�rÞ2 �Eabð�tÞ �xa �xb

þOð�r3=R3Þ; (1.1)

g�0 �a ¼
2

3c3
ð1�M= �rÞð1þM=�rÞ2�abp �Bp

cð�tÞ �xb �xc

þOð �r3=R3Þ; (1.2)

for our purposes here we shall not need an expression for
g �a �b, the space-space components of the metric. The metric
is expressed as an expansion in powers of �r=R, the ratio of

�r :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2 þ �z2

p
, the distance from the black hole, to

R, the local radius of curvature of the external spacetime.
The metric is valid in the black hole’s local neighborhood
B, which is defined by �r < �rmax (see Fig. 1); we demand
that �rmax=R be small, but within B the ratio M=�r is
allowed to be arbitrarily large.
The first term on the right-hand side of Eq. (1.1) is the

Schwarzschild piece of the metric; it is expressed in har-
monic coordinates, and in these coordinates the (unper-
turbed) event horizon is situated at �r ¼ M. The second
term and the right-hand side of Eq. (1.2) represent the tidal

perturbation. The tensorial functions �Eabð�tÞ and �Babð�tÞ are
the tidal moments (Sec. II), and it is these tensors that
characterize the black hole’s tidal environment. The tidal
moments are symmetric and tracefree (STF) tensors, in the

sense that �Eba ¼ �Eab and �ab �Eab ¼ 0, with similar rela-

tions holding for �Bab. The tensors c�2 �Eab and c�3 �Bab

have a dimension of squared inverse length, and their scale

definesR, the local radius of curvature; we have c�2 �Eab �
R�2 and c�3 �Bab �R�2. The tidal moments are not
determined by solving the Einstein field equations in B.
They are a priori arbitrary, and their determination is

FIG. 1 (color online). The post-Newtonian domain D, the
black-hole neighborhood B, and the overlap region O. The
post-Newtonian domain is depicted in blue (light gray), and it
includes the green (dark gray) annulus that surrounds the black
hole. The black-hole neighborhood is drawn as a yellow (white)
disk around the black hole, and it also includes the green (dark
gray) annulus. The black hole is represented as a black disk. The
overlap region is the union of B and D that is shown in green
(dark gray), the union of the blue and yellow colors.
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accomplished by matching the black-hole metric to a
global metric defined in a domain that is much larger
than B. In this work the tidal moments are determined
by placing the black hole within a post-Newtonian environ-
ment; the global metric is obtained by solving the Einstein
field equations in the first post-Newtonian approximation.

We next describe this post-Newtonian environment. We
consider a spatial domainD that is much larger thanB, the
black-hole neighborhood (see Fig. 1). This domain con-
tains an arbitrary distribution of matter,1 and it is assumed
that everywhere withinD gravity is sufficiently weak to be
adequately described by the post-Newtonian approxima-
tion to general relativity. The domain is spatially limited by
a sphere of radius rnear centered on the post-Newtonian
barycenter. This sphere marks the boundary of the near
zone: IfT is a typical time scale for processes taking place
within D, and if �c ¼ cT is a typical wavelength of the
gravitational waves escaping the domain, then rnear < �c.
The domain also excludes a sphere of radius �rmin centered
on the black hole, inside which gravity is too strong to be
adequately described by post-Newtonian theory. We de-
mand both that M= �rmin � 1 and �rmin=R � 1, which is
possible when M � R. There exists an overlap region O
between the black-hole neighborhood B and the post-
Newtonian domain D. This region is described by �rmin <
�r < �rmax, and we assume that there is no matter in O. So
while matter is present somewhere within D, we assume
that the black hole is moving in an empty region of
spacetime.

The metric in D can be expressed as a post-Newtonian
expansion of the form (Sec. IV)

g00 ¼ �1þ 2

c2
Uþ 2

c4
ð��U2Þ þOðc�6Þ; (1.3)

g0a ¼ � 4

c3
Ua þOðc�5Þ; (1.4)

gab ¼
�
1þ 2

c2
U

�
�ab þOðc�4Þ; (1.5)

in which U is a Newtonian potential, Ua a vector potential,
and � a post-Newtonian potential; the metric is presented
in harmonic coordinates x� ¼ ðx0; xaÞ ¼ ðct; x; y; zÞ.
These barycentric coordinates differ from the black-hole
coordinates ðc�t; �x; �y; �zÞ introduced previously; the black-
hole and post-Newtonian metrics are presented in different

coordinate systems. In spite of the fact that each system is
harmonic, the coordinates are indeed distinct: They are
defined in different domains (x� in D, �x� in B), and
they have a different spatial origin (x� is centered on the
post-Newtonian barycenter, whose position is fixed in the
global reference frame, while �x� is centered on the moving
black hole).
In the overlap region O, the spacetime is empty of

matter, and the potentials U, Ua, and� satisfy the vacuum
field equations of post-Newtonian theory. The Newtonian
potential, for example, must satisfy Laplace’s equation in
flat space, r2U ¼ 0. The solution must account for the
presence of a black hole, and it must also account for the
presence of matter outside O. We treat the black hole as a
post-Newtonian monopole, and we write

Uðt; xÞ ¼ Gm

jx� zðtÞj þUextðt; xÞ; (1.6)

in which the three-dimensional vector zðtÞ denotes the
position of the black hole in the barycentric coordinates.
The external potential Uext is created by the matter outside
O, and within the overlap region we have r2Uext ¼ 0. The
potentials Ua and � are handled in a similar fashion
(Sec. IV), and in this way we construct the post-
Newtonian metric in O.
The post-Newtonian metric of Eqs. (1.3), (1.4), and (1.5)

and the black-hole metric of Eqs. (1.1) and (1.2) both give a
valid description of the gravitational field in O. The met-
rics must agree in the overlap region, and matching them
determines the equations of motion for zðtÞ as well as the
tidal moments �Eabð�tÞ and �Babð�tÞ. This matching, however,
can only be done after the post-Newtonian metric is trans-
formed from the barycentric coordinates x� to the black-
hole coordinates �x�. This transformation, between two
systems of harmonic coordinates, can be fully worked
out (Sec. V), relying on previous work by Kopeikin [19],
Brumberg and Kopeikin [20], Damour, Soffel, and Xu [9],
Kopeikin and Vlasov [21], and Racine and Flanagan [12].
The matching procedure determines the coordinate

transformation completely (Sec. VI C), and it produces a
justification of the earlier statement that the black hole can
be treated as a post-Newtonian monopole. (A fuller dis-
cussion of this point is presented at the end of Sec. IV).
This statement, therefore, is a strict consequence of the
Einstein field equations, rather than an artificial assump-
tion. At the first post-Newtonian order, the gravitational
field of a black hole is that of a pure monopole, and it
would be inconsistent to endow the black hole with an
additional multipole structure.
The matching procedure produces also an equation of

motion for the moving black hole. It reads (Sec. VI E)

1Here and below, the word ‘‘matter’’ describes a number of
different situations. The matter could be a continuous fluid, so as
to model an accretion disk or a galactic core. It could also
correspond to a collection of N � 1 bodies with weak self-
gravity, making the black hole a member of an N-body system.
Or else the domain D could exclude a number N � 1 of small
regions that would each contain a condensed body such as a
neutron star or a black hole. In this last case, the post-Newtonian
domain would contain no matter at all, but we will nevertheless
refer to the N � 1 excluded regions as ‘‘matter.’’
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aa ¼ @aUext þ 1

c2
½@a�ext � 4ð@aUb

ext � @bUa
extÞvb

þ 4@tU
a
ext þ ðv2 � 4UextÞ@aUext

� vað4vb@bUext þ 3@tUextÞ� þOðc�4Þ; (1.7)

in which v ¼ dz=dt is the black hole’s velocity vector in
the barycentric frame, and a ¼ dv=dt is its acceleration.
The external potentials Uext, U

a
ext, and �ext are defined as

in Eq. (1.6), and they are evaluated at x ¼ zðtÞ after
differentiation. Equation (1.7) applies to a black hole mov-
ing in any post-Newtonian environment. When this envi-
ronment consists of ðN � 1Þ external bodies, so that the
black hole is a member of an N-body system, Eq. (1.7)
reduces to the standard (Einstein-Infeld-Hoffman) post-
Newtonian equations of motion. These are listed, for ex-
ample, in Exercise 39.15 of Misner, Thorne, and Wheeler
[22]. In effect, Eq. (1.7) states that the black hole moves on
a geodesic of the metric of Eqs. (1.3), (1.4), and (1.5), in
which the (singular) potentials U, Ua, and � are replaced
by the (smooth) external potentials created by the distribu-
tion of matter outside the black-hole neighborhood B.

It is interesting to compare the differences between our
derivation of Eq. (1.7) and the approach followed by
Racine and Flanagan (RF) [12]. First, the work of RF is
concerned with arbitrarily structured bodies (with weak or
strong internal gravity), while our own work is concerned
specifically with a nonrotating black hole, which is neces-
sarily treated as a post-Newtonian monopole. Our work,
therefore, is a specialization of theirs. Second, RF define
the frame ð�t; �xaÞ, which they call the body-adapted frame,
by (essentially) setting the body’s intrinsic mass dipole
moment to zero; this is (essentially) the piece of g�0 �0 that
behaves as �xa=�r3. This coordinate choice does not, in
general, constrain the tidal dipole moment; this is (essen-
tially) the piece of g�0 �0 that grows as �xa. In our work, the
coordinates ð�t; �xaÞ are defined so as to eliminate all mass
dipole moments (both intrinsic and tidal) from the metric.
This is made possible by the fact that we are dealing here
with a specific type of body—a nonrotating black hole—
instead of a general body whose nature is characterized
only by an infinite set of multipole moments. Indeed, the
work of Zerilli [23] shows that in vacuum, an even-parity
dipole perturbation of the Schwarzschild metric can always
be removed by a gauge transformation; it is this gauge
choice that defines our own version of the body-adapted
frame, and the metric of Eqs. (1.1) and (1.2) reflects the
complete absence of dipole terms. Third, in RF, the equa-
tions of motion are obtained by exploiting the integral form
of the momentum-conservation identities that come as a
consequence of the Landau-Lifshitz formulation of the
Einstein field equations [24]. In our approach, the equa-
tions of motion are obtained directly by matching the
black-hole and post-Newtonian metrics, and the computa-
tions are considerably simpler. This advantage is inti-
mately tied to our complete control over the dipole

terms; a derivation of the equations of motion involving
matching only would not be possible without the ability to
set both the intrinsic and tidal mass dipole moments to
zero.
Finally, the matching procedure produces expressions

for the tidal moments (Secs. VID and VI E). In the bar-
ycentric frame they are given by

Eab ¼ �@abUext þ 1

c2
� ð@habi�ext þ 4vcð@abUext

c

� @chaUext
bi Þ � 4@thaUext

bi � 2ðv2 �UextÞ@abUext

þ 3vcvha@bicUext þ 2vha@bitUext

þ 3@haUext@biUextÞþOðc�4Þ; (1.8)

and

B ab ¼ 2�pqða@pbÞðUq
ext � vqUextÞ þOðc�2Þ; (1.9)

in which the external potentials are evaluated at x ¼ zðtÞ
after differentiation. The brackets around indices indicate
symmetrization, while angular brackets indicate an STF
operation: For any tensor Aab we have AðabÞ ¼ 1

2 ðAab þ
AbaÞ and Ahabi :¼ AðabÞ � 1

3�abA, where A :¼ �abAab. The

expressions of Eqs. (1.8) and (1.9) are valid for any post-
Newtonian environment.
Given the vast difference in notations and ways of ex-

pressing our results, we have not attempted to compare
Eqs. (1.8) and (1.9) to the results obtained by Racine and
Flanagan [12], nor to those of Damour, Soffel, and Xu [9–
11]. We can state, however, that the specialization of
Eqs. (1.8) and (1.9) to an N-body system is in perfect
agreement with the corresponding results of Damour,
Soffel, and Xu—see, in particular, Eqs. (4.29)–(4.31) of
Ref. [11]. We shall provide evidence for this statement in
Sec. VII A.
When the black hole is part of a binary system in circular

motion, the nonvanishing components of the tidal moments
are given by (Sec. VII C)

E 11 þ E22 ¼�Gm0

b3

�
1þ m

2ðmþm0Þ ðvrel=cÞ
2 þOðc�4Þ

�
;

(1.10)

E 11 � E22 ¼ � 3Gm0

b3

�
1� 3mþ 4m0

2ðmþm0Þ ðvrel=cÞ
2

þOðc�4Þ
�
cos2!t; (1.11)

E12 ¼ � 3Gm0

2b3

�
1� 3mþ 4m0

2ðmþm0Þ ðvrel=cÞ
2 þOðc�4Þ

�

� sin2!t; (1.12)

B 13 ¼ � 3Gm0

b3
vrel cos!tþOðc�2Þ; (1.13)
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B 23 ¼ � 3Gm0

b3
vrel sin!tþOðc�2Þ; (1.14)

where m is the mass of the black hole, m0 the mass of the
companion, and b :¼ jz� z0j the orbital separation be-
tween the two bodies (in barycentric harmonic coordi-
nates); the components E13, E23, B11, B22, and B12 all
vanish for circular orbits, and E33 ¼ �ðE11 þ E22Þ. In

these equations vrel :¼ jv� v0j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðmþm0Þ=bp

stands
for the (Newtonian) orbital velocity of the relative orbit,
and

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðmþm0Þ

b3

s �
1� 3m2 þ 5mm0 þ 3m02

2ðmþm0Þ2 ðvrel=cÞ2

þOðc�4Þ
�

(1.15)

is the orbit’s post-Newtonian angular velocity.
Equations (1.8), (1.9), (1.10), (1.11), (1.12), (1.13),
(1.14), and (1.15) are expressed in the barycentric coordi-
nates x�. In the main text (see Sec. VII D) we also list
expressions that are valid in the black hole’s moving frame.
In the comoving coordinates �x� we find that Eqs. (1.10),
(1.11), (1.12), (1.13), and (1.14) are unchanged, except for
the fact that the tidal moments must now be expressed in
terms of the transformed phase variable �! �t . The trans-
formed angular velocity �!, given by

�! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðmþm0Þ

b3

s �
1� 3m2 þ 7mm0 þ 3m02

2ðmþm0Þ2 ðvrel=cÞ2

þOðc�4Þ
�
; (1.16)

accounts for the change in time coordinate as well as the
geodetic precession of the moving frame relative to the
barycentric frame. Notice the different coefficient in front
of mm0 in the post-Newtonian term.

Equations (1.7), (1.8), (1.9), (1.10), (1.11), (1.12),
(1.13), (1.14), (1.15), and (1.16) are the main results of
this work. As an application we examine (Sec. VIII), in a
suitable choice of gauge, the intrinsic geometry of the
event horizon of a tidally-deformed black hole. We also
calculate (Sec. IXA) the rate at which the black hole
acquires mass as a result of its tidal interaction with the
companion body. We find that this rate of tidal heating is
given by

G _m ¼ 32

5c15
m6m02

ðmþm0Þ8
�
Gðmþm0Þ

b

�
9

�
�
1� 5m2 þ 12mm0 þ 6m02

ðmþm0Þ2

� ðvrel=cÞ2 þOðc�4Þ
�
: (1.17)

The rate at which the tidal coupling increases the black
hole’s angular momentum J can next be obtained from the
rigid-rotation relation _mc2 ¼ �! _J .

C. Relevance of this work

Our interest in this paper is mostly in the exploration of
the tidal dynamics of black holes, in a weak-field context in
which the tidal fields can be determined explicitly. These
dynamics produce the tidal heating of the black hole, an
increase in mass (and angular momentum and surface area)
that is produced entirely by an influx of gravitational
energy across the horizon. This fascinating phenomenon
was studied before, most notably by Poisson and Sasaki
[25], Alvi [26], Price and Whelan [27], Hughes [28],
Martel [29], and Poisson [18,30]. We provide here some
additional insights.
The tidal heating of a nonrotating black hole is generally

very small. Relative to the energy radiated away by gravi-
tational waves, the effect is of order ðv=cÞ8. In practical
terms, the effect is likely to be too small to be observed in a
gravitational-wave signal that would be measured by
ground-based detectors such as LIGO, VIRGO, and
GEO600. For example, Alvi [26] calculated that for binary
systems involving black holes with masses ranging from 5
to 50 solar masses, tidal heating is negligible: It contributes
only a small fraction of a wave cycle during the signal’s
sweep through the detector’s frequency band.
In some circumstances, however, the tidal heating is a

significant effect that should not be neglected [27]. In
particular, it is likely to be observed in gravitational-
wave signals that would be measured by a space-based
detector such as LISA. For example, Martel [29] showed
that during a close encounter between a massive black hole
and a compact body of much smaller mass, up to approxi-
mately 5% of the total radiated energy is absorbed by the
black hole, the rest making its way out to infinity. Hughes
[28] calculated that when the massive black hole is rapidly
rotating, tidal heating slows down the inspiral of the orbit-
ing body, thereby increasing the duration of the
gravitational-wave signal. For example, a 1M� compact
body on a slightly inclined, circular orbit around a 106M�
black hole of near-maximum spin will spend approxi-
mately two years in the LISA frequency band before its
final plunge into the black hole; Hughes shows that tidal
heating contributes approximately 20 days (and 104 wave
cycles) to these two years.
Another situation in which the tidal heating might be

‘‘measured’’ is in the numerical simulations of black-hole
mergers. To reveal this small effect the simulations will
need to be performed with very high accuracy and resolu-
tion, but this should become possible within the next few
years. The simulations would reveal a steady growth in the
irreducible mass of each black hole at a rate that should be
compatible with Eq. (1.17) if the holes are nonrotating. A
recent paper by Boyle et al. [31] suggests that the tidal
heating of black holes might already have been seen in
numerical simulations—witness their Fig. 4.
As an additional application of our work we mention

another connection with numerical relativity. If the simu-
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lations of black-hole mergers are to describe realistic situ-
ations of astrophysical interest, it is imperative that they
proceed from data that correctly describe the initial state of
the system (the correct state of motion, and the correct
amount of initial radiation). The idea that well-controlled
initial-data sets could be constructed with the help of post-
Newtonian theory is an old one [32–37], but its initial
formulation did not account for the strong internal gravity
of each black hole, which cannot be approximated by a
post-Newtonian series. Alvi [15,16] was the first to remedy
this situation by matching the post-Newtonian metric to
black-hole metrics, in the way that was reviewed in
Secs. I A and I B. Alvi’s work was improved upon by
Yunes et al. [17] (see Sec. I A), and our work contributes
an additional improvement. While Alvi and Yunes calcu-
lated the black-hole tidal moments for circular motion
only, and only to the leading order in a post-Newtonian
expansion, here we calculate Eab to the first post-
Newtonian order, and Bab to the leading order, for more
general situations. Our results could be used to generate an
improved version of the Alvi-Yunes metric, which could
then be used to construct improved initial-data sets for
numerical relativity.

D. Organization of this paper

The technical portion of the paper begins in Sec. II with
an introduction to the description of tidal environments in

terms of STF moments �Eab and �Bab. In Sec. III we present
the black-hole metric of Eqs. (1.1) and (1.2). In Sec. IV we
introduce the post-Newtonian metric of Eqs. (1.3), (1.4),
and (1.5), and discuss the decomposition of the gravita-
tional potentials into a black-hole piece and an external
piece, as in Eq. (1.6). In Sec. V we review the coordinate
transformation between the barycentric frame ðt; xaÞ and
the black-hole frame ð�t; �xaÞ, and we calculate how the post-
Newtonian potentials change under this transformation.
The end result of this computation is a post-Newtonian
metric expressed in the same coordinates as the black-hole
metric of Sec. III. In Sec. VI we match the black-hole and
post-Newtonian metrics and derive our expression of
Eq. (1.7) for the black hole’s acceleration vector, as well
as Eqs. (1.8) and (1.9) for the tidal moments. In Sec. VII we
specialize our results to the specific case of a two-body
system. We first calculate the tidal moments for generic
orbital motion, and we next specialize these results to
circular motion; this gives rise to Eqs. (1.10), (1.11),
(1.12), (1.13), (1.14), (1.15), and (1.16) above. In
Sec. VIII we present an application of our results: We
examine the intrinsic geometry of the event horizon of a
tidally-deformed black hole in a suitable choice of gauge.
And finally, in Sec. IX we apply our results to a calculation
of the tidal heating of a black hole by an external body on a
circular orbit; this is a gauge-independent effect. We first
consider the case of a nonrotating black hole and obtain
Eq. (1.17). We next consider the case of a rotating black

hole; the result was not displayed above, but it can be found
in Eq. (8.7) below.
Throughout the paper (except in Secs. III B and VIII) we

work in quasi-Lorentzian coordinates x� ¼ ðct; xaÞ or
�x� ¼ ðc�t; �xaÞ, and we adopt a standard three-dimensional
notation when we deal with spatial components. For ex-
ample, we use v ¼ ðvx; vy; vzÞ to denote a Cartesian vector
with components va in a flat, three-dimensional space.
Indices on va are manipulated with the Euclidean metric
�ab, and �abc is the familiar permutation symbol. The

Euclidean norm of v is jvj :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�abv

avb
p

, and we let r :¼
jxj and �r :¼ j �xj. Because the paper is devoted to a post-
Newtonian treatment of tidal gravity, we find it useful to
use conventional units in whichG and c are not set equal to
1 (Sec. III B is again an exception in this regard); as in
much of the literature on post-Newtonian theory, we use
c�2 as a formal expansion parameter.

II. TIDAL SCALES AND TIDAL MOMENTS

As shown in Sec. I B, the black hole’s tidal environment

is described by the STF tensors �Eabð�tÞ and �Babð�tÞ, and it is
characterized by the length scale R. Our purpose in this
section is to formally introduce these quantities, and to set
the stage toward the computation of the black-hole metric

in Sec. III. The gravito-electric tidal moments �Eab can be
introduced most simply in the context of Newtonian grav-
ity; we shall do this first. The gravito-magnetic moments
�Bab do not exist in the Newtonian theory, but they appear
in a relativistic description of tidal fields. (The overbar, we
recall, indicates that the tidal moments are evaluated in a
reference frame that moves with the black hole).
In Newtonian gravity the total potential U can be ex-

pressed as in Eq. (1.6), with the first term Gm=�r describing
the black hole (here �r2 :¼ �ab �x

a �xb), and the second term
Uext describing the gravitational influence of the external
matter. Assuming that the external potential varies slowly
in the black-hole neighborhoodB, we express it as a Taylor
expansion in powers of �r,

Uextð�t; �xaÞ ¼ Uextð�t; 0Þ þ �gað�tÞ �xa þ 1
2
�Eabð�tÞ �xa �xb

þ 1
6
�Eabcð�tÞ �xa �xb �xc þOð�r4=R4Þ:

Here �ga :¼ @ �aUextð�t; 0Þ is the gravitational force (per unit
mass) acting on the black hole, �Eab :¼ @ �a �bUextð�t; 0Þ is the
quadrupole moment of the external potential, and �Eabc :¼
@ �a �b �cUextð�t; 0Þ is the octupole moment. The first term in the
expansion does not depend on the spatial coordinates and
plays no role in the gravitational interaction of the black
hole with the external distribution of matter. The second
term �ga �x

a also plays no role because we are working in a
noninertial frame attached to the moving black hole. What

remains is the pure tidal potential, Utidal ¼ 1
2
�Eab �xa �xb þ

1
6
�Eabc �xa �xb �xc þOð �r4=R4Þ, expressed in terms of the spa-

tial coordinates and the tidal moments (which depend on
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time). Notice that the tidal moments are defined as fully
symmetric tensors. And because Uext satisfies Laplace’s
equation in B (recall that the black-hole neighborhood is
assumed to be empty of matter), the tidal moments are also

tracefree. The quantities �Eab and �Eabc (and all higher-order
moments) are therefore STF tensors: �Eab ¼ �Ehabi and
�Eabc ¼ �Ehabci. In addition, because c�2Uext is dimension-

less, c�2 �Eab has a dimension of inverse length squared, and
the tidal length scale R is defined such that the compo-

nents of c�2 �Eab are typically of order R�2. In the preced-
ing expression for Uext we have assumed that the

components of c�2 �Eabc are of order R�3, and that each
additional term in the expansion comes with an additional
power of �r=R.

In general relativity the definition of the tidal moments
�Eab, �Eabc, �Bab,

�Babc, (and higher-order moments) requires
more refinement. The relevant tools were introduced by
Thorne and Hartle [6] and Zhang [38]. We consider a
neighborhood of a geodesic world line � in an arbitrary
spacetime. In this neighborhood the metric is assumed to
satisfy the vacuum field equations. (In Sec. III a black hole
will be placed on this geodesic, and our spacetime will
become the ‘‘external spacetime’’ of Sec. I A. For the time
being, however, the black hole is absent.) We install a
normal coordinate system ð�t; �xaÞ in the neighborhood. It
possesses the following properties: (1) the spatial coordi-
nates �xa vanish on �, and �t is proper time on the geodesic;
(2) the metric takes on Minkowski values on �; (3) all
Christoffel symbols vanish on �; and (4) the coordinates
are harmonic, in the sense that the metric satisfies the
conditions @�ð ffiffiffiffiffiffiffi�gp

g��Þ ¼ 0 everywhere in the

neighborhood.
The metric near � admits an expansion in powers of �r.

By virtue of property (2) the zeroth-order terms are con-
stant, and by virtue of property (3) there are no terms at the
first order. The terms at the second and higher orders
contain information about the curvature of spacetime
near the geodesic, and it is those terms that describe the
tidal environment around �. This environment is charac-
terized by the scaling quantities R, L, and T , with R
denoting the radius of curvature on �; L, the scale of
spatial inhomogeneity; and T , the time scale over which
changes occur in the environment. The tidal environment is
described precisely by the tidal moments
�Eabð�tÞ; �Eabcð�tÞ; � � � and �Babð�tÞ; �Babcð�tÞ; � � � , which are
STF tensors that depend on �t only. They are related to
components of the Riemann tensor and its derivatives
evaluated on �—see Zhang’s Eqs. (1.3) for definitions
[38]. The gravito-electric moments scale as

c�2 �Eab �R�2; c�2 �Eabc �R�2L�1;

c�2 _�Eab �R�2T �1;
(2.1)

in which an overdot indicates differentiation with respect
to �t. It is the relations of Eq. (2.1) that define the scalesR,

L, and T . The gravito-magnetic moments scale as

c�3 �Bab � ðv=cÞR�2; c�3 �Babc � ðv=cÞR�2L�1;

c�3 _�Bab � ðv=cÞR�2T �1; (2.2)

in which v�L=T is a velocity scale. In a slow-motion
context we have that v=c� 1, and the gravito-magnetic
moments are smaller than the gravito-electric moments by
a small factor of order v=c.
To illustrate the meaning of these tidal scales we return

to the example presented in Sec. I A, in which the tidal
environment is provided by an external body of mass m0.
We suppose that the geodesic is at a distance b from the

external body. In this situation v=c� ffiffiffiffiffiffiffiffiffiffiffiffi
M0=b

p
, where

M0 :¼ Gm0=c2 is the characteristic gravitational radius of
the external body. The tidal scales are then given by

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3=M0

q
; L� b; T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3=Gm0

q
:

We notice that L� ðv=cÞR and T �R=c; in a slow-
motion situation we have that L � R.
The metric near � takes the form derived by Zhang [38]

g�0 �0 ¼ �1� 1

c2
�Eab �xa �xb � 1

3c2
�Eabc �xa �xb �xc þ � � � ; (2.3)

g�0 �a ¼
2

3c3
�abp

�Bp
c �x
b �xc þ 1

3c3
�abp

�Bp
cd �x

b �xc �xd

� 10

21c3

�
�xa

_�Ebc �xb �xc � 2

5
�r2 _�Eab �xb

�
þ � � � ; (2.4)

g �a �b ¼ �ab

�
1þ 1

c2
�Ecd �xc �xd þ 1

3c2
�Ecde �xc �xd �xe

�
þ 5

21c4

�
�
�xða�bÞcp

_�B
p
d �x

c �xd � 1

5
�r2�cpða

_�B
p
bÞ �xc

�
þ � � � ;

(2.5)

where �abc is the permutation symbol. The neglected terms
involve higher powers of �r, and higher-order tidal
moments.
The first tidal term on the right-hand side of Eq. (2.3) is

of order ð �r=RÞ2, and the second term is smaller than this
by a factor of order �r=L; the neglected terms are smaller
still, by additional factors of order �r=L. In Eq. (2.4) the
first term is of order ðv=cÞð�r=RÞ2, and the second term is
smaller than this by a factor of order �r=L; taking into
account the scalings L� ðv=cÞR and T �R=c, the
same is true of the third and fourth terms. In Eq. (2.5) the
first tidal term is of order ð �r=RÞ2, and the second term is
smaller by a factor of order �r=L; the third and fourth terms
are smaller than this by another factor of order �r=L, and
they come also with an additional factor of order ðv=cÞ2.
These considerations lead us to the following conclu-

sion: If we restrict the neighborhood of � to be such that �r
is everywhere much smaller than L, then Zhang’s metric
can be simplified to
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g�0 �0 ¼ �1� 1

c2
�Eab �xa �xb þO

�
�r3

R2L

�
; (2.6)

g�0 �a ¼
2

3c3
�abp

�Bp
c �x
b �xc þO

�
v

c

�r3

R2L

�
; (2.7)

g �a �b ¼ �ab

�
1þ 1

c2
�Ecd �xc �xd

�
þO

�
�r3

R2L

�
: (2.8)

This simplified form, which involves the lowest-order tidal
moments only, and which neglects their time derivatives,
shall be sufficient for our purposes below.

III. TIDALLY DEFORMED BLACK HOLE

A. Metric of a deformed black hole

The metric of Eqs. (2.6), (2.7), and (2.8) describes the
tidal environment around a geodesic � in an arbitrary
spacetime, with the only restriction that the geodesic’s
neighborhood must be empty of matter. We now place a
nonrotating black hole of mass m on this geodesic, and
modify the metric to account for its gravitational effects.
As we shall show below (in Sec. III B), the metric of the
tidally deformed black hole is given by

g�0 �0 ¼ � 1�M=�r

1þM=�r
� �r2ð1�M=�rÞ2Eq þO

�
�r3

R2L

�
;

(3.1)

g�0 �a ¼
2

3
�r2ð1�M=�rÞð1þM= �rÞ2Bq

a þO

�
v

c

�r3

R2L

�
;

(3.2)

g �a �b ¼
1þM=�r

1�M=�r
�a�bþ ð1þM=�rÞ2�ab

� �r2ð1þM=�rÞ2Eq�a�b�M �rð1þM= �rÞ2
� ð1þM2=3�r2Þð�aE

q
bþ Eq

a�bÞ � �r2ð1�M=�rÞ2
� ð1þM=�rÞ3�abEq �M �rð1þM=�rÞ2ð1�M2=3�r2Þ

� Eq
abþO

�
�r3

R2L

�
(3.3)

in the hole’s neighborhoodB, which is formally defined by
�r < �rmax with �rmax � L (this is a refinement of the defi-
nition presented in Sec. I B). Here M :¼ Gm=c2 is the
black hole’s gravitational radius, �a :¼ �xa=�r is a unit
radial vector, and �ab :¼ �ab ��a�b. The tidal poten-
tials are given by

E q ¼ 1

c2
�Ecd�c�d; (3.4)

E q
a ¼ 1

c2
�a

c �Ecd�d; (3.5)

E q
ab ¼

1

c2
ð2�ac�bd �Ecd þ �abEqÞ; (3.6)

B q
a ¼ 1

c3
�apq�

p �Bq
c�

c; (3.7)

the label q stands for ‘‘quadrupole.’’ The metric of
Eqs. (3.1), (3.2), and (3.3) is presented in harmonic coor-
dinates, and it is an approximate solution to the vacuum
field equations linearized about the Schwarzschild metric.

Indeed, setting �Eab ¼ �Bab ¼ 0 in Eqs. (3.1), (3.2), and
(3.3) returns the Schwarzschild metric in harmonic coor-
dinates, and the tidal potentials represent a pure-
quadrupole metric perturbation. It is easy to see that
when �r is much larger than M (but still much smaller
than L), Eqs. (3.1), (3.2), and (3.3) reduce to Eqs. (2.6),
(2.7), and (2.8). This shows that Zhang’s metric provides
the appropriate asymptotic conditions for the metric of a
tidally deformed black hole; these replace the
asymptotically-flat conditions that would be appropriate
for an isolated black hole. Like the metric of Eqs. (2.6),
(2.7), and (2.8), the black-hole metric neglects tidal terms
that are smaller than the dominant ones by additional
factors of order �r=L � 1; within this approximation the
metric is accurate to all orders in M= �r.
The method by which the metric of Eqs. (3.1), (3.2), and

(3.3) is obtained is explained in the next subsection. The
reader not interested in those details can immediately
proceed to Sec. IV, in which we present the post-
Newtonian metric to which the black-hole metric will be
matched. Before we proceed, however, it is useful to note
that the components of the black-hole metric that are
required for matching are

g�0 �0 ¼ � 1�M=�r

1þM=�r
� 1

c2
ð1�M=�rÞ2 �Eabð�tÞ �xa �xb

þO

�
�r3

R2L

�
; (3.8)

and

g�0 �a ¼
2

3c3
ð1�M= �rÞð1þM=�rÞ2�abp �Bp

cð�tÞ �xb �xc

þO

�
v

c

�r3

R2L

�
: (3.9)

We recall thatM ¼ Gm=c2 is the black hole’s gravitational
radius.

B. Derivation

We begin this subsection with a warning on a change of
notation; this change applies to this subsection only. To
simplify the notation we shall refrain from displaying the
overbar, in spite of the fact that we continue to work in a
reference frame that moves with the black hole. In addi-
tion, we shall use relativist’s units, in which c and G are
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both set equal to unity. And finally, in this section we use
g�� to denote the Schwarzschild metric (as opposed to the

perturbed metric displayed in Sec. III A), and we let h��
denote the tidal perturbation; the perturbed metric is there-
fore g�� þ h��.

To obtain Eqs. (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), and
(3.7) we rely on Ref. [18], in which the metric of a tidally
deformed, nonrotating black hole is presented in light-cone
coordinates ðv; �; �;	Þ. The advanced-time coordinate v
is constant on past light cones that converge toward � ¼ 0,
� is the usual Schwarzschild radial coordinate that mea-
sures the area of closed surfaces of constant ðv; �Þ, and
�A ¼ ð�;	Þ are angular coordinates on these surfaces. In
the light-cone coordinates the Schwarzschild metric takes
the form

g��dx
�dx� ¼ �fdv2 þ 2dvd�þ �2�ABd�

Ad�B;

(3.10)

with f :¼ 1� 2M=� and �ABd�
Ad�B :¼ d�2 þ

sin2�d	2 denoting the metric on the unit two-sphere.
The nonvanishing components of the tidal perturbation are

hlightvv ¼ ��2f2Eq; (3.11)

h
light
vA ¼ �2

3�
3fðEq

A �Bq
AÞ; (3.12)

h
light
AB ¼ �1

3�
4ð1� 2M2=�2ÞEq

AB þ 1
3�

4ð1� 6M2=�2ÞBq
AB;

(3.13)

in which the label ‘‘light’’ indicates that the perturbation is
presented in the light-cone gauge. The tidal potentials are
given in terms of the tidal moments EabðvÞ and BabðvÞ by
the relations

E q ¼ Eab�a�b; (3.14)

E q
A ¼ �a

AEab�
b; (3.15)

E q
AB ¼ 2�a

A�
b
BEab þ�ABEq; (3.16)

B q
A ¼ �a

A�apq�
pBq

b�
b; (3.17)

B q
AB ¼ �a

A�apq�
pBq

b�
b
B þ�b

B�bpq�
pBq

a�
a
A;

(3.18)

where �a :¼ ðsin� cos	; sin� sin	; cos�Þ and �a
A
:¼

@�a=@�A. The perturbed metric is g�� þ h��, and it is

straightforward to show that this metric satisfies the vac-
uum field equations linearized about the Schwarzschild
solution. The metric is accurate up to terms of order
(r3=R2L) that come from higher-order tidal moments,
and terms of order (r3=R2T ) that come from the time
derivative of the quadrupole moments. For the purposes of
substitution into the field equations, Eab and Bab can be
considered to be time-independent.

The black-hole metric is expressed in the light-cone
coordinates ðv; �; �AÞ, and we wish to perform a trans-
formation to harmonic coordinates ðt; xaÞ. We accomplish
this in two steps. First, we perform a gauge transformation
to change the perturbation h�� from its current light-cone

gauge to a harmonic gauge. Second, we perform a back-
ground coordinate transformation from the (background)
light-cone coordinates to the (background) harmonic co-
ordinates. This strategy, and its implementation detailed
below, was suggested to us by Detweiler [39].
Let a set of four scalar fields be defined by

T :¼ v� �� 2M logð�=2M� 1Þ; (3.19)

X :¼ ð��MÞ sin� cos	; (3.20)

Y :¼ ð��MÞ sin� sin	; (3.21)

Z :¼ ð��MÞ cos�; (3.22)

and let us collectively denote the members of this set by

Xð
Þ. It is straightforward to show that each one of the

scalar fields Xð
Þ satisfies the wave equation

hXð
Þ :¼ g��r�r�X
ð
Þ ¼ 1ffiffiffiffiffiffiffi�gp @�ðg��@�Xð
ÞÞ ¼ 0

(3.23)

in the Schwarzschild spacetime. Here r� is the covariant-
derivative operator compatible with the Schwarzschild
metric g��, and g is the metric determinant. The statement

of Eq. (3.23) is coordinate independent. When, however,
we choose t ¼ T, x ¼ X, y ¼ Y, and z ¼ Z as coordinates,
then Eq. (3.23) becomes @�ð ffiffiffiffiffiffiffi�gp

g
�Þ ¼ 0, the familiar

statement of the harmonic coordinate condition.
Equation (3.23) therefore provides a coordinate-invariant

way of stating that the scalar fields Xð
Þ form a set of
harmonic coordinates for the Schwarzschild spacetime.

We now demand that Xð
Þ be harmonic coordinates for
the perturbed spacetime, in addition to being harmonic
coordinates for the Schwarzschild spacetime. To achieve
this we rewrite Eq. (3.23) in terms of the full metric g�� þ
h�� and its associated covariant-derivative operator. We

write g�� � h�� for the inverse metric and
ffiffiffiffiffiffiffi�gp ð1þ 1

2hÞ
for the metric determinant, and we manipulate the indices
with the background metric; for example, h�� ¼
g��g��h�� and h ¼ g��h��. After some straightforward

manipulations we find that in addition to Eq. (3.23), the
scalar fields must also satisfy the set of equations

r�ð ��r�X
ð
ÞÞ ¼ 0; (3.24)

where  �� ¼ h�� � 1
2 g��h is the ‘‘trace-reversed’’ metric

perturbation. This equation can be interpreted as a gauge
condition on h��: The perturbation will be in the harmonic

gauge if it satisfies the conditions of Eq. (3.24). This
equation is coordinate invariant, and the harmonic-gauge
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condition can be imposed even when the coordinates x� do

not coincide with the scalar fields Xð
Þ.
In Eq. (3.11), (3.12), and (3.13) the metric perturbation is

presented in the light-cone gauge. A transformation to the
harmonic gauge will be generated by the vector field ��, so
that

hharm�� ¼ hlight�� �r��� �r���: (3.25)

It is straightforward to show that if hharm�� is to satisfy

Eq. (3.24), then the vector field must satisfy the four
equations

r�ð ��lightr�X
ð
ÞÞ ¼ ðh��Þr�X

ð
Þ þ 2ðr���Þr�r�X
ð
Þ;

(3.26)

in our case the perturbation is traceless in the light-cone

gauge, so  light
�� ¼ hlight�� . It may be verified that the vector

�v ¼ �1
3�

3fEq; (3.27)

�� ¼ 1
3�

3Eq; (3.28)

�A ¼ � �5f2

3ð��MÞ E
q
A þ 1

3�
2ð�2 � 6M2ÞBq

A (3.29)

is a solution to Eqs. (3.26). In this computation the tidal
moments Eab and Bab can be considered to be time-
independent, because the time derivative of �� is smaller
than its spatial derivatives by a small factor of order �=T .

Substitution of Eqs. (3.11), (3.12), (3.13), (3.27), (3.28),
and (3.29) into Eq. (3.25) returns the tidal perturbation in
the desired harmonic gauge. We obtain

hharmvv ¼ ��2f2Eq; (3.30)

hharmv� ¼ �2fEq; (3.31)

hharm�� ¼ �2�2Eq; (3.32)

hharmvA ¼ 1
3�

3fBq
A; (3.33)

hharm�A ¼ � M�2

3ð��MÞ2 ð3�
2 � 6M�þ 4M2ÞEq

A �
2

3
�3Bq

A;

(3.34)

hharmAB ¼ � �5f2

��M
�ABEq

� M�2

3ð��MÞ ð3�
2 � 6M�þ 2M2ÞEq

AB: (3.35)

The full metric is next obtained by adding h�� to g�� as

given by Eq. (3.10).
The tidal perturbation is now correctly expressed in the

harmonic gauge, but the metric is still written in terms of

the original coordinates ðv; �; �;	Þ. Our final step is there-
fore to perform a coordinate transformation from these
coordinates to the harmonic coordinates (t ¼ T, x ¼ X,
y ¼ Y, z ¼ Z). We carry this out in two stages. First, we
effect a transformation from ðv; �Þ to ðt; rÞ, leaving the
angular coordinates alone; here t ¼ v� ��
2M logð�=2M� 1Þ is harmonic time and r ¼ ��M is
the harmonic radial coordinate. This coordinate transfor-
mation brings the Schwarzschild metric to the new form

g��dx
�dx� ¼ � 1�M=r

1þM=r
dt2 þ 1þM=r

1�M=r
dr2

þ ðrþMÞ2�ABd�
Ad�B; (3.36)

and the tidal perturbation becomes

hlighttt ¼ �r2ð1�M=rÞ2Eq; (3.37)

hlightrr ¼ �r2ð1þM=rÞ2Eq; (3.38)

hlighttA ¼ 2
3r

3ð1�M=rÞð1þM=rÞ2Bq
A; (3.39)

hlightrA ¼ �Mr2ð1þM=rÞ2ð1þM2=3r2ÞEq
A; (3.40)

hlightAB ¼ �r4ð1�M=rÞ2ð1þM=rÞ3�ABEq

�Mr3ð1þM=rÞ2ð1�M2=3r2ÞEq
AB: (3.41)

In the second stage we go from the spherical coordinates
ðr; �AÞ to the associated Cartesian coordinates xa ¼ r�a,
that is, x ¼ r sin� cos	, y ¼ r sin� sin	, and z ¼ r cos�.
The transformation matrix is @r=@xa ¼ �a and
@�A=@xa ¼ r�1�A

a , in which �a :¼ �ab�
b and �A

a :¼
�AB�ab�

b
B. The transformation of g�� þ h�� under this

change of coordinates is easy to carry out, and the end
result is the metric of Eqs. (3.1), (3.2), and (3.3).

IV. POST-NEWTONIAN METRIC

In this section we take our attention away from the
black-hole neighborhood B, and we take the global view
of the post-Newtonian domainD, which was introduced in
Sec. I B. Let us recall thatD is spatially limited by a sphere
of radius rnear centered on the post-Newtonian barycenter,
and that this sphere marks the boundary of the near zone.
The domain excludes a sphere of radius �rmin centered on
the black hole, inside which the hole’s gravity is too strong
to be adequately described by post-Newtonian theory. We
recall also that there exists an overlapO between the black-
hole neighborhood B and the post-Newtonian domain D.
This is described by �rmin < �r < �rmax, in which �rmax � L is
the boundary ofB. We assume that there is no matter inO.
The metric in D is expressed in the post-Newtonian

form

g00 ¼ �1þ 2

c2
Uþ 2

c4
ð��U2Þ þOðc�6Þ; (4.1)
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g0a ¼ � 4

c3
Ua þOðc�5Þ; (4.2)

gab ¼
�
1þ 2

c2
U

�
�ab þOðc�4Þ; (4.3)

in which U is a Newtonian potential, Ua a vector potential,
and� a post-Newtonian potential. The metric is presented
in harmonic coordinates x� ¼ ðct; xaÞ. These coordinates
are centered on the post-Newtonian barycenter, which
defines the origin of an inertial reference frame; we recall
that they are distinct from the harmonic coordinates �x� ¼
ðc�t; �xaÞ used in B.

We assume that there is a distribution of matter within
D, and we make only two assumptions regarding its
nature. First, we assume that its gravity is sufficiently
weak to be adequately described by the post-Newtonian
metric of Eqs. (4.1), (4.2), and (4.3). Second, we assume
that there is no matter inO, so that the black hole moves in
an empty region of spacetime. Otherwise the distribution
of matter within D is completely arbitrary. It could be a
continuous fluid, so as to model an accretion disk or a
galactic core; or it could correspond to a collection of N �
1 bodies with weak self-gravity, making the black hole a
member of an N-body system; or else the domainD could
exclude a number N � 1 of small regions that would each
contain a condensed body such as a neutron star or a black
hole. Our considerations allow for this degree of generality.

We wish to solve the Einstein field equations in the
vacuum domain O. To write them down it is convenient
to express the post-Newtonian potential as

� ¼  þ 1

2

@2X

@t2
; (4.4)

in terms of two new potentials  and X. The degeneracy is
broken by the field equations, which are given by (see, for
example, Ref. [12])

r2U ¼ 0; (4.5)

r2Ua ¼ 0; (4.6)

r2 ¼ 0; (4.7)

r2X ¼ 2U; (4.8)

where r2 is the usual Laplacian operator of three-
dimensional flat space. The potential X is commonly re-
ferred to as the post-Newtonian superpotential. The vac-
uum field equations are augmented by the harmonic
coordinate condition

@tUþ @aU
a ¼ 0; (4.9)

which takes the form of a gauge condition on the gravita-
tional potentials.

Each one of the field equations is linear, and a solution
representing a black hole and an external distribution of
matter can be obtained by linear superposition.We treat the
black hole as a post-Newtonian monopole of mass m
moving on a trajectory described by the position vector
x ¼ zðtÞ; we let v :¼ dz=dt be the black hole’s velocity
vector, and a :¼ dv=dt is the acceleration vector. In this
treatment the solutions to the field equations are expressed
as

Uðt; xÞ ¼ Gm

jx� zj þUextðt; xÞ; (4.10)

Uaðt; xÞ ¼ Gmva

jx� zj þUa
extðt; xÞ; (4.11)

 ðt; xÞ ¼ Gm


jx� zj þ  extðt; xÞ; (4.12)

Xðt; xÞ ¼ Gmjx� zj þ Xextðt; xÞ; (4.13)

where jx� zðtÞj is the Euclidean distance between the
field point x and the black hole.
The first term on the right-hand side of each equation

represents the black hole, and we see that indeed, each
black-hole potential has a monopole structure. The fact
that the vector v appears in the vector potential Ua is a
consequence of the gauge condition of Eq. (4.9). The
quantity 
ðtÞ that appears in  is a post-Newtonian cor-
rection to the mass parameterm; this cannot be determined
directly from the vacuum field equations.2

The second terms on the right-hand sides of Eqs. (4.10),
(4.11), (4.12), and (4.13) are the potentials created by the
matter distribution external to O. In O they separately
satisfy the vacuum field equations of Eqs. (4.5), (4.6),
(4.7), and (4.8), and they separately satisfy the harmonic-
gauge condition of Eq. (4.9)

@tUext þ @aU
a
ext ¼ 0: (4.14)

We assume that the external potentials are smooth func-
tions of the coordinates in a neighborhood of x ¼ zðtÞ.
From Eq. (4.4) we find that the post-Newtonian potential

� is given by

2If the black hole were treated as a point particle, solving the
field equations in the presence of a distributional energy-
momentum tensor would reveal that 
 ¼ 3

2v
2 �Uext (t, x ¼

z), where v2 ¼ jvj2. This is indeed the correct expression, but in
our approach the determination of 
 will come at a later stage,
from a careful matching of the post-Newtonian metric with the
black-hole metric of Sec. III. For the time being 
ðtÞ will remain
undetermined.
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� ¼ �Gm

2s3
ðv � sÞ2 þGm

s

�

þ 1

2
v2
�
�Gm

2s
a � s

þ�ext; (4.15)

where s :¼ x� zðtÞ, s :¼ jsj, and �ext ¼  ext þ 1
2 @

2
t Xext.

The foregoing equations provide necessary and suffi-
cient information regarding the post-Newtonian environ-
ment of the black hole. A remarkable and important aspect
of our discussion is that the black hole is treated as a post-
Newtonian monopole. This feature requires a justification.
At the level of Eqs. (4.10), (4.11), (4.12), and (4.13) the
monopole nature of the black hole is introduced as an
assumption. As we proceed with the matching of the
post-Newtonian metric with the black-hole metric of
Sec. III, however, we shall see that our assumption is the
only one that is consistent with the given structure of the
black-hole metric. If we had instead given an arbitrary
multipole structure to our black hole, the matching proce-
dure would eventually force us to set all higher multipole
moments to zero; the only surviving moment is the black-
hole mass m. As we shall see, therefore, the statement that
the black hole is a post-Newtonian monopole is a strict
consequence of the field equations of general relativity; no
other multipole structure is possible. The monopole struc-
ture is not assumption introduced for its simplicity; it is a
direct outcome of the matching procedure.

V. TRANSFORMATION FROM BARYCENTER
FRAME TO BLACK-HOLE FRAME

The post-Newtonian metric of Eqs. (4.1), (4.2), and (4.3),
with the potentials of Eqs. (4.10), (4.11), and (4.15), is not
yet ready to be matched to the black-hole metric of
Eqs. (3.1), (3.2), and (3.3). While both metrics are defined
in the overlap region O and describe the same physical
situation, they are expressed in different coordinate sys-
tems: The post-Newtonian coordinates ðt; xaÞ are defined
everywhere in D, and they are attached to the post-
Newtonian barycenter; the black-hole coordinates ð�t; �xaÞ
are defined only in B, and they are attached to the moving
black hole. Each coordinate system is harmonic, and since
they overlap in O there exists a coordinate transformation
between them. This transformation, from harmonic coor-
dinates to harmonic coordinates, is worked out in Sec. VA,
following closely the treatment of Racine and Flanagan
[12]. Their work was built on the post-Newtonian theory of
reference frames developed by Kopeikin, [19], Brumberg
and Kopeikin [20], Damour, Soffel, and Xu [9], and
Kopeikin and Vlasov [21]. In Sec. VB we calculate how
the potentials of Eqs. (4.10), (4.11), and (4.15) change
under the transformation from the barycenter frame to
the black-hole frame. And finally, in Sec. VC we express
the transformed potentials in terms of irreducible quantities
that will facilitate the matching with the black-hole metric,
to be carried out in Sec. VI.

A. Coordinate transformation

The most general coordinate transformation that pre-
serves the post-Newtonian expansion of the metric is given
by [12]

t ¼ �tþ 1

c2
�ð�t; �xaÞ þ 1

c4
�ð�t; �xaÞ þOðc�6Þ; (5.1)

xa ¼ �xa þ zað�tÞ þ 1

c2
hað�t; �xaÞ þOðc�4Þ; (5.2)

where

�ð�t; �xaÞ ¼ Að�tÞ þ va �x
a; (5.3)

hað�t; �xaÞ ¼ Hað�tÞ þHa
bð�tÞ �xb þ 1

2H
a
bcð�tÞ �xb �xc; (5.4)

with

Habð�tÞ ¼ �abcR
cð�tÞ þ 1

2vavb � �abð _A� 1
2v

2Þ; (5.5)

Habcð�tÞ ¼ ��abac � �acab þ �bcaa: (5.6)

The functions A, za, Ha, and Ra are freely specifiable
functions of time �t, while � is a free function of all the
coordinates; these functions characterize the coordinate
transformation. An overdot indicates differentiation with
respect to �t, and we have introduced

va :¼ _za; aa :¼ _va ¼ €za: (5.7)

As before indices are raised and lowered with the
Euclidean metric �ab, and we let v2 ¼ �abv

avb.
The transformation of Eqs. (5.1) and (5.2) preserves the

post-Newtonian expansion of the metric, but it does not
necessarily keep the coordinates harmonic. To preserve
this also we must set

�ð�t; �xaÞ ¼ 1
6
€A�ab �x

a �xb þ 1
30ð�ab _ac þ �ac _ab

þ �bc _aaÞ �xa �xb �xc þ �ð�t; �xaÞ; (5.8)

and � is required to satisfy Laplace’s equation: �r2� ¼ 0,

with �r2 denoting the Laplacian operator in the coordinates
�xa.
Under the coordinate transformation the potentials be-

come

�Uð�t; �xaÞ ¼ Û� _Aþ 1
2v

2 � aa �x
a; (5.9)

�Uað�t; �xaÞ ¼ Ûa � Ûva þ 1
4ðVa þ Vab �x

b

þ 1
2V

a
bc �x

b �xc þ @ �a�Þ; (5.10)

��ð�t; �xaÞ ¼ �̂� 4Ûava þ 2v2Ûþ ðAþ vb �x
bÞ@�tÛ

þ ðFa þ Fab �x
b þ 1

2F
a
bc �x

b �xcÞ@ �aÛþG

þGa �x
a þ 1

2Gab �x
a �xb þ 1

6Gabc �x
a �xb �xc � @�t�;

(5.11)
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where

Va ¼ ð2 _A� v2Þva � _Ha þ �abcv
bRc; (5.12)

Vab ¼ 3
2v

aab þ 1
2a
avb þ �abð43 €A� 2vcacÞ � �abc

_Rc;

(5.13)

Vabc ¼ 6
5ð�ab _ac þ �ac _abÞ � 4

5�bc _a
a; (5.14)

Fa ¼ Ha � Ava; (5.15)

Fab ¼ ��abð _A� 1
2v

2Þ � 1
2v

avb þ �abcR
c; (5.16)

Fabc ¼ �ð�abac þ �acabÞ þ aa�bc; (5.17)

G ¼ 1
2
_A2 � _Av2 þ 1

4v
4 þ _Hava; (5.18)

Ga ¼ ð _A� 1
2v

2Þaa � ð €A� 3
2v

cacÞva � �abcv
b _Rc; (5.19)

Gab ¼ aaab � va _ab � _aavb þ �abðvc _acÞ � 1
3�abA

ð3Þ;
(5.20)

Gabc ¼ �1
5ð�ab €ac þ �ac €ab þ �bc €aaÞ: (5.21)

Here Að3Þ stands for d3A=d�t3.
The ‘‘hatted’’ potentials are equal to the original poten-

tials evaluated at time t ¼ �t and position xa ¼ �xa þ zað�tÞ.
For example,

Ûð�t; �xaÞ :¼ Uðt ¼ �t; xa ¼ �xa þ zað�tÞÞ: (5.22)

Because U now possesses, in addition to its original ex-
plicit time dependence, an implicit time dependence con-
tained in zað�tÞ, some care must be exercised when taking

time derivatives of Û. We have, for example,

@Û

@�t
¼

�
@U

@t
þ va

@U

@xa

�
t¼�t;x¼ �xþz

;

@Û

@ �xa
¼

�
@U

@xa

�
t¼�t;x¼ �xþz

:

(5.23)

The harmonic coordinate condition reads

@�tÛ� va@ �aÛþ @ �aÛ
a ¼ 0 (5.24)

when it is expressed in terms of the hatted potentials.

B. Post-Newtonian potentials in the black-hole frame

Our task in this subsection is to transform the potentials
of Eqs. (4.10), (4.11), and (4.15) from the barycenter
coordinates ðt; xaÞ to coordinates ð�t; �xaÞ that are centered
on the black hole. Each coordinate system is harmonic, and
the transformation was described in the preceding subsec-
tion. The most important pieces of the coordinate trans-
formation are the functions zað�tÞ, and for these we choose

zað�tÞ ¼ zaðt ¼ �tÞ; (5.25)

where zðtÞ is the black hole’s position vector in the bar-
ycentric frame. In words, the coordinate displacements
zað�tÞ are given by the black-hole position in the barycentric
system, evaluated at the time t ¼ �t. With this choice it
follows that the quantities va and aa that appear in the
coordinate transformation are the same as those contained
in the post-Newtonian potentials. The other freely specifi-
able pieces of the coordinate transformation will be deter-
mined in due course.

The transformed potentials �U, �Ua, and �� are expressed
partly in terms of the hatted potentials. We have, for

example, Ûð�t; �xaÞ ¼ Uð�t; �xa þ zaÞ. According to
Eqs. (4.10), (4.11), and (4.15), the hatted potentials are

Û ¼ Gm

�r
þ Ûext; (5.26)

Û a ¼ Gmva

�r
þ Ûa

ext; (5.27)

�̂ ¼ �Gm

2�r3
vavb �x

a �xb þGm

�r

�

þ 1

2
v2
�
�Gm

2�r
aa �x

a

þ �̂ext; (5.28)

in which the vector s :¼ x� zðtÞ has been identified with

�x; we continue to use the notation �r :¼ j �xj ¼ ð�ab �xa �xbÞ1=2.
The external potentials are given, for example, by

Û extð�t; �xaÞ :¼ Uextðt ¼ �t; xa ¼ �xa þ zað�tÞÞ: (5.29)

They satisfy the harmonic coordinate condition

@�tÛext � va@ �aÛext þ @ �aÛ
a
ext ¼ 0: (5.30)

Because it is well behaved near �xa, each external potential
can be expressed as a Taylor expansion about �x ¼ 0. For
example,

Ûextð�t; �xÞ ¼ Ûextð�t; 0Þ þ @ �aÛextð�t; 0Þ þ 1
2@ �a �bÛextð�t; 0Þ

þ � � � : (5.31)

This defines the strategy behind our calculation of the
transformed potentials: Each quantity that is smooth at �x ¼
0 will be expressed as a Taylor expansion. The potentials,
therefore, will contain a piece that is singular at �x ¼ 0, and
a smooth piece that will be expressed as a Taylor series. All
Taylor expansions will be truncated at the quadratic order,
and they will involve derivatives of the external potentials
evaluated at �x ¼ 0.
The harmonic function �ð�t; �xaÞ, introduced in Eq. (5.8),

is smooth at �x ¼ 0, and it also can be expressed as a Taylor
expansion. We write

�ð�t; �xaÞ ¼ Cð�tÞ þ �að�tÞ �xa þ 1
2�abð�tÞ �xa �xb

þ 1
6�abcð�tÞ �xa �xb �xc þ � � � : (5.32)

STEPHANNE TAYLOR AND ERIC POISSON PHYSICAL REVIEW D 78, 084016 (2008)

084016-14



To ensure that this is a solution to Laplace’s equation, we
must choose the expansion coefficients to be STF tensors.
We express this property as �ab ¼ �habi and �abc ¼ �habci.
The expansion coefficients are otherwise arbitrary, and
they will be determined in due course.

After a lengthy computation we obtain

�U ¼ Gm

�r
þ 0Uþ 1Ua �x

a þ 2Uab �x
a �xb þ � � � ; (5.33)

�U a ¼ 0U
a þ 1U

a
b �x

b þ 2U
a
bc �x

b �xc þ � � � ; (5.34)

�� ¼ �Gm

�r3
ðHa � AvaÞ �xa þGm

�r
ð
þ _A� 2v2Þ þ 0�

þ 1�a �x
a þ 2�ab �x

a �xb þ � � � ; (5.35)

with

0U ¼ 1
2v

2 � _Aþ Ûext; (5.36)

1Ua ¼ �aa þ @ �aÛext; (5.37)

2Uab ¼ 1
2@ �a �bÛext; (5.38)

0U
a ¼ Ûext � vaÛext þ 1

4ð2 _A� v2Þ � 1
4
_Ha

þ 1
4�
a
bcv

bRc þ 1
4�

a; (5.39)

1U
a
b ¼ @ �bÛ

a
ext � va@ �bÛext þ 3

8v
aab þ 1

8a
avb

þ 1
4�

a
bð43 €A� 2vcacÞ � 1

4�
a
bc

_Rc þ 1
4�

a
b; (5.40)

2U
a
bc ¼ 1

2@ �b �cÛ
a
ext � 1

2v
a@ �b �cÛext þ 3

20ð�ab _ac þ �ac _abÞ
� 1

10
_aa�bc þ 1

8�
a
bc; (5.41)

0� ¼ �̂ext � 4vaÛ
a
ext þ 2v2Ûext þ A@�tÛext

þ ðHa � AvaÞ@ �aÛext þ 1
2
_A2 � _Av2

þ 1
4v

4 þ _Hava � _C; (5.42)

1�a ¼ @ �a�̂ext � 4vb@ �aÛ
b
ext þ ð52v2 � _AÞ@ �aÛext

� 1
2vav

b@ �bÛext þ va@�tÛext þ A@�t �aÛext

þ ðHb � AvbÞ@ �a �bÛext þ ð _A� 1
2v

2Þaa
� ð €A� 3

2v
cacÞva � �abcð@ �bÛextR

c þ vb _RcÞ � _�a;

(5.43)

2�ab ¼ 1
2@ �a �b�̂ext � 2vc@ �a �bÛ

c
ext þ ð32v2 � _AÞ@ �a �bÛext

� 1
2v

cvða@ �bÞ �cÛext þ vða@ �bÞ�tÛext þ 1
2A@�t �a �bÛext

� aða@ �bÞÛext þ 1
2�aba

c@ �cÛext � �cpðaR
p@ �bÞ �cÛext

þ 1
2ðHc � AvcÞ@ �c �a �bÛext þ 1

2aaab � vða _abÞ
þ 1

2�abðvc _acÞ � 1
6�abA

ð3Þ � 1
2
_�ab: (5.44)

It is understood that in these expressions, the external
potentials are evaluated at �x ¼ 0 after differentiation.
This notational convention will be retained below.

C. Decomposition into irreducible pieces

To facilitate the matching procedure it is useful to
decompose the tensors 2Uab, 1Uab, 2Uabc, and 2�ab into

their irreducible components. Equation (5.38) reveals that

2Uab is already a pure STF tensor, because �r2Ûext ¼ 0
everywhere near the black hole.
We write

1Uab ¼ 1
3�ab1Uþ 1Uhabi þ 1U½ab�; (5.45)

which is a decomposition of 1Uab into a trace part, an STF

part, and an antisymmetric part. Equation (5.40) implies

1U ¼ €A� @�tÛext � vcac; (5.46)

1Uhabi ¼ @h �aÛext
bi � vha@ �biÛext þ 1

2vhaabi þ 1
4�ab; (5.47)

1U½ab� ¼ �@½ �aÛext
b� � v½a@ �b�Ûext þ 1

4v½aab� � 1
4�abc

_Rc:

(5.48)

To decompose 2Uabc we first isolate its completely

symmetric part, and we writeUabc ¼ UðabcÞ þ Vabc, where
Vabc ¼ 2

3 ðU½ab�c þU½ac�bÞ is what is left over of Uabc after

complete symmetrization. The first term is decomposed
into trace and STF parts. For the second term we note that
2
3U½ab�c possesses 3� 3 ¼ 9 independent components, so

that it can be expressed as �abpX
p
c, in terms of a general

3� 3 matrix Xab. This, in turn, can be decomposed as
Xab ¼ 1

3�abX þ Vab þ X½ab�, in terms of trace, STF, and

antisymmetric components. Finally, we write X½ab� ¼
�abpV

p, which relates the 3 independent components of

X½ab� to those of a vector Va. Altogether, we have
2
3U½ab�c ¼ 1

3 �abcX þ �acVb � �bcVa þ �abpV
p
c. This pro-

duces Vabc ¼ �abVc þ �acVb � 2�bcVa þ �abpV
p
c þ

�acpV
p
b, and we obtain the decomposition

2Uabc ¼ 2Uhabci þ 1
5ð�ab2Uc þ �ac2Ub þ �bc2UaÞ

þ �ab2Vc þ �ac2Vb � 2�bc2Va þ �abp2V
p
c

þ �acp2V
p
b;

where 2Ua :¼ �bc2UðabcÞ. The 18 independent components

of 2Uabc have been packaged into the 7 components of
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2Uhabci, the 3 components of 2Ua, the 3 components of 2Va,

and the 5 components of 2Vab. Calculation shows that

2Va ¼ 1
4 2Ua and we obtain, finally,

2Uabc ¼ 2Uhabci þ 9
20ð�ab2Uc þ �ac2UbÞ � 3

10�bc2Ua

þ �abp2V
p
c þ �acp2V

p
b; (5.49)

with

2Ua ¼ 1
3ð _aa � @�t �aÛextÞ; (5.50)

2Vab ¼ �1
6�ða

pq@ �bÞ �pðÛext
q � vqÛextÞ; (5.51)

2Uhabci ¼ 1
6ð@ �a �bÛ

ext
c þ @ �a �cÛ

ext
b þ @ �b �cÛ

ext
a Þ

� 1
6ðvc@ �a �bÛext þ vb@ �a �cÛext þ va@ �b �cÛextÞ

þ 1
15@�tð�ab@ �cÛext þ �ac@ �bÛext þ �bc@ �aÛextÞ

þ 1
8�abc: (5.52)

That the right-hand side of Eq. (5.52) is STF follows from

the facts that: (i) the potentials Ûext and Ûa
ext satisfy

Laplace’s equation; (ii) they obey the harmonic condition
of Eq. (5.30); and (iii) �abc is itself a STF tensor.

The decomposition of 2�ab is

2�ab ¼ 2�habi þ 1
3�ab2�; (5.53)

with

2� ¼ 1
2ð@�t �tÛext þ a2 þ va _aa � Að3ÞÞ; (5.54)

2�habi ¼ 1
2@ �a �b�̂ext � 2vc@ �a �bÛ

c
ext þ ð32v2 � _AÞ@ �a �bÛext

� 1
2v

cvða@ �bÞ �cÛext þ vða@ �bÞ�tÛext þ 1
2A@�t �a �bÛext

� aða@ �bÞÛext þ 1
2�aba

c@ �cÛext

� �cpðaR
p@ �bÞ �cÛext þ 1

2ðHc � AvcÞ@ �c �a �bÛext

� 1
6�ab@�t �tÛext þ 1

2ahaabi � vha _abi � 1
2
_�ab:

(5.55)

The right-hand side of Eq. (5.55) is STF by virtue of the

field equation satisfied by �̂ext. In the barycentric framewe
have r2�ext ¼ 2@ttUext; transforming to the black hole’s
moving frame gives instead

�r 2�̂ext ¼ @�t �tÛext � aa@ �aÛext � 2va@�t �aÛext

þ vavb@ �a �bÛext: (5.56)

VI. MATCHING THE BLACK-HOLE AND POST-
NEWTONIAN METRICS

Because the black-hole and post-Newtonian metrics are
now expressed in the same coordinate system ð�t; �xaÞ in the
overlap region O, we are finally ready to compare their
expressions. We recall that the black-hole metric is valid
when �r� L, while the global post-Newtonian metric is
valid when �r� M; the expansions provided in Eqs. (5.33),
(5.34), and (5.35) are also restricted to the domain �r� L.
The metrics can be compared directly when �r is such that

M � �r� L. A typical value of �r in O might be �rc �ffiffiffiffiffiffiffiffiffi
ML

p
, and we have that �rc=L�M=�rc � v=c; each quan-

tity is indeed small. We write the metrics in Sec. VIA in a
form that is ready for matching, and the matching condi-
tions are extracted in Sec. VI B. In Sec. VI C we use them
to determine the free functions associated with the coor-
dinate transformation; this procedure reveals, in particular,
the equations of motion for the black hole. In Sec. VID we
determine the free functions that appear in the black-hole
and post-Newtonian metrics; it is here that the tidal mo-

ments �Eab and �Bab are finally obtained. In our last sub-
section, Sec. VI E, we transform the equations of motion
and tidal moments from the black-hole frame back to the
barycenter frame, in which they are most easily
interpreted.

A. Metrics

In the overlap region O the black-hole metric can be
expressed as a post-Newtonian expansion. Writing

�E ab ¼ �EN
ab þ

1

c2
�EPN
ab þOðc�4Þ; (6.1)

we get

g�0 �0 ¼ �1þ 2Gm

c2 �r
� 2G2m2

c4 �r2
� 1

c2
�EN
ab �x

a �xb � 1

c4
�EPN
ab �x

a �xb

þ 2Gm

c4 �r
�EN
ab �x

a �xb þOðc�6Þ þO

�
�r3

R2L

�
; (6.2)

and

g�0 �a ¼
2

3c3
�abp

�Bp
cð�tÞ �xb �xc þOðc�5Þ þO

�
v

c

�r3

R2L

�
:

(6.3)

The post-Newtonian metric is obtained by inserting
Eqs. (5.33), (5.34), and (5.35) within Eqs. (4.1), (4.2), and
(4.3). The result is

g�0 �0 ¼ �1þ 2Gm

c2 �r
� 2Gm

c4 �r3
ðHa � AvaÞ �xa þ 2Gm

c4 �r
ð
þ _A� 2v2Þ � 2G2m2

c4 �r2
� 4Gm

c4 �r
ð0Uþ 1Ua �x

a þ 2Uab �x
a �xbÞ

þ 2

c2

�
0Uþ 1

c2 0�� 1

c2
ð0UÞ2

�
þ 2

c2

�
1Ua þ 1

c2 1�a � 2

c2 0U1Ua

�
�xa þ 2

c2

�
2Uab þ

1

c2 2�ab �
2

c2 0U2Uab

� 1

c2 1Ua1Ub

�
�xa �xb þOðc�6Þ þO

�
�r3

R2L

�
(6.4)
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and

g�0 �a ¼ � 4

c3
ð0Ua þ1 Uab �x

b þ2 Uabc �x
b �xcÞ þOðc�5Þ

þO

�
v

c

�r3

R2L

�
: (6.5)

Comparing Eq. (6.4) to Eq. (6.2), and Eq. (6.5) to Eq. (6.3)
produces a complete set of matching conditions.

B. Matching conditions

From the absence of �xa-independent terms in Eq. (6.2)
we get 0Uþ c�2½0�� ð0UÞ2� ¼ Oðc�4Þ, which implies

that 0U ¼ Oðc�2Þ. The equation simplifies to

0Uþ 1

c2 0� ¼ Oðc�4Þ: (6.6)

From the absence of terms linear in �xa we get 1Ua þ
c�2½1�a � 20U1Ua� ¼ Oðc�4Þ, which implies

1Ua þ 1

c2 1�a ¼ Oðc�4Þ: (6.7)

Comparing the singular terms in g�0 �0 and taking into ac-
count the facts that 0U ¼ Oðc�2Þ and 1U ¼ Oðc�2Þ, we
obtain

Ha � Ava ¼ Oðc�2Þ; (6.8)


þ _A� 2v2 ¼ Oðc�2Þ; (6.9)

and

�E N
ab ¼ �22Uab; (6.10)

the last equation can be valid if and only if 2Uab is an STF

tensor, a property that was already established in Sec. VC.
Equation (6.10) is recovered by matching the terms that are
quadratic in �xa in g�0 �0, and this also reveals that

�E PN
ab ¼ �22�ab: (6.11)

We observe that unlike all preceding equations, Eqs. (6.10)
and (6.11) do not include an error term Oðc�2Þ; this is
because each member of these equations is defined so as to
possess a specific post-Newtonian order.

From the absence of �xa-independent terms in Eq. (6.3)
we get

0Ua ¼ Oðc�2Þ; (6.12)

and from the absence of linear terms we obtain

1Uab ¼ Oðc�2Þ: (6.13)

Finally, matching the quadratic terms in g�0 �a produces

�paðb �Bp
cÞ ¼ �62Uabc þOðc�2Þ: (6.14)

The matching conditions of Eqs. (6.6), (6.7), (6.8), (6.9),
(6.10), (6.11), (6.12), (6.13), and (6.14) allow the determi-

nation of the quantities

A; za; Ha; Ra; C; �a; �ab; �abc;

that appear in the transformation from the barycentric
frame ðt; xaÞ to the black hole’s moving frame ð�t; �xaÞ.
They allow also the determination of the functions


; �EN
ab;

�EPN
ab ;

�Bab;

that appear in the post-Newtonian and black-hole metrics.

C. Determination of the coordinate transformation

From Eq. (6.6) we learn that 0U ¼ Oðc�2Þ, and with the
expression for 0U given in Eq. (5.36), we find that Að�tÞ is
determined by the differential equation

_A ¼ 1
2v

2 þ Ûext; (6.15)

where Ûext 	 Ûextð�t; 0Þ is the external Newtonian potential
evaluated at �xa ¼ 0. With A determined, Eq. (6.8) implies

Ha ¼ Ava þOðc�2Þ; (6.16)

and this determines Hað�tÞ.
From Eq. (6.7) we learn that 1Ua ¼ Oðc�2Þ, and with the

expression for 1Ua given in Eq. (5.37), we obtain an
expression for the black hole’s acceleration vector

aa ¼ @ �aÛext þOðc�2Þ; (6.17)

where the external potential is evaluated at �xa ¼ 0 after
differentiation. This is a Newtonian approximation to the
acceleration vector, and the post-Newtonian corrections
will be determined below.
With 0U ¼ Oðc�2Þ Eq. (6.6) implies 0� ¼ Oðc�2Þ, and

taking into account Eqs. (6.15), (6.16), and (6.17),
Eq. (5.42) reveals that

_C ¼ �̂ext � 4vaÛ
a
ext þ 5

2v
2Ûext þ 1

2Û
2
ext

þ Að@�tÛext þ va@ �aÛextÞ þ 3
8v

4 þOðc�2Þ; (6.18)

in which each external potential is evaluated at �xa ¼ 0 after
differentiation. This equation determines Cð�tÞ.
Equation (6.13) implies that each irreducible piece of

1Uab must vanish to order c0. According to Eq. (5.45) we

must have 1U ¼ 0 ¼ 1Uhabi ¼ 1U½ab�. With Eq. (5.46) we

reproduce Eq. (6.15). From Eqs. (5.47) and (6.17) we get

�ab ¼ �4@h �aÛext
bi þ 2vha@ �biÛext: (6.19)

And from Eq. (5.48) we find

�abc _Rc ¼ �4@½ �aÛext
b� � 3v½a@ �b�Ûext; (6.20)

an equation that determines Rað�tÞ.
Taking into account Eqs. (6.15), (6.16), and (6.17),

Eqs. (5.39) and (6.12) imply

NONROTATING BLACK HOLE IN A POST-NEWTONIAN . . . PHYSICAL REVIEW D 78, 084016 (2008)

084016-17



�a ¼ �4Ûext
a þ ð12v2 þ 3ÛextÞva þ A@ �aÛext � �abcv

bRc

þOðc�2Þ: (6.21)

We may now determine the post-Newtonian corrections
to the acceleration vector. We return to Eq. (6.7), in which
we insert Eqs. (5.37) and (5.43). We next incorporate
Eqs. (6.15), (6.16), and (6.17), as well as Eqs. (6.20) and
(6.21). After simplification we obtain

aa ¼ @ �aÛext þ 1

c2
½@ �a�̂ext � 4vb@

�aÛb
ext þ 4@�tÛ

a
ext

þ ðv2 � 4ÛextÞ@ �aÛext � ðvc@ �cÛext þ 3@�tÛextÞva�
þOðc�4Þ; (6.22)

where (as always) the external potentials are evaluated at
�xa ¼ 0 after differentiation. Equation (6.22) is a system of
second-order differential equations for the functions zað�tÞ;
they represent equations of motion for the black hole.

The last piece of the coordinate transformation that must
be determined is �abc. The information comes from
Eq. (6.14) and the decomposition of Eq. (5.49).
Comparing the equations reveals that 2Ua and 2Uhabci
must both vanish. The first statement reproduces
Eq. (6.17), while the second implies

�abc ¼ �4
3ð@ �a �bÛ

ext
c þ @ �a �cÛ

ext
b þ @ �b �cÛ

ext
a Þ þ 4

3ðvc@ �a �bÛ
ext

þ vb@ �a �cÛ
ext þ va@ �b �cÛ

extÞ � 8
15@�tð�ab@ �cÛext

þ �ac@ �bÛext þ �bc@ �aÛextÞ:
This can be expressed more compactly as

�abc ¼ �4ð@h �a �bÛ
ext
ci � vha@ �b �ciÛ

extÞ: (6.23)

The coordinate transformation is now completely deter-
mined by the matching conditions.

D. Determination of the metric functions

Equations (6.9) and (6.15) imply


 ¼ 3
2v

2 � Ûext; (6.24)

in which the external potential is evaluated at �xa ¼ 0. As
was first pointed out in the footnote that follows Eq. (4.13),
this assignment can also be obtained by calculating the
post-Newtonian potential  —see Eq. (4.4)—for a point
particle of the same mass as the black hole. Our matching
procedure shows that 
 keeps the same value when the
particle is replaced by the black hole.

The electric components of the tidal fields are deter-
mined by Eqs. (6.10) and (6.11). After inserting Eqs. (5.38)
and (5.53) and invoking Eq. (6.15) to eliminate the trace
part of 2�ab, we obtain

�E N
ab ¼ �@ �a �bÛext; (6.25)

and �EPN
ab ¼ �22�habi. An explicit evaluation of this yields

�EPN
ab ¼ �@h �a �bi�̂ext þ 4vc@ �a �bÛ

c
ext � 4@�th �aÛext

bi
� 2ðv2 � ÛextÞ@ �a �bÛext þ vcvha@ �bi �cÛext

þ 2vha@ �bi�tÛext þ 3@h �aÛext@ �biÛext

� A@�t �a �bÛext þ 2�cpðaRp@ �c
�bÞÛext; (6.26)

where, as usual, the external potentials are evaluated at
�xa ¼ 0 after differentiation. The complete tidal potentials

are �Eab ¼ �EN
ab þ c�2 �EPN

ab þOðc�4Þ, as was expressed in
Eq. (6.1).
The magnetic components of the tidal fields are deter-

mined by Eq. (6.14) and the decomposition of Eq. (5.49).
Taking into account the facts that 2Ua and 2Uhabci must

both vanish (as was noted previously), comparing the

equations reveals that �Bab ¼ �122Vab þOðc�2Þ. With

Eq. (5.51), this is

�B ab ¼ 2�ða
pq@ �bÞ �pðÛext

q � vqÛextÞ þOðc�2Þ: (6.27)

The metric functions are now fully determined by the
matching conditions.

E. Transformation to the barycentric frame

In the moving frame ð�t; �xaÞ the black hole is situated at
�xa ¼ 0. According to Eqs. (5.1), (5.2), (5.3), and (5.4), the
position of the black hole in the barycentric frame is
described by the parametric equations

tbh ¼ �tþ 1

c2
Að�tÞ þOðc�4Þ;

xabh ¼ zað�tÞ þ 1

c2
Hað�tÞ þOðc�4Þ:

(6.28)

The first equation can be approximately inverted as �t ¼
tbh � c�2AðtbhÞ þOðc�4Þ, and substitution into the second
equation yields xabh ¼ zaðtbhÞ þ c�2½HaðtbhÞ �
AðtbhÞvaðtbhÞ� þOðc�4Þ. With Eq. (6.16) this becomes

xabh ¼ zaðtbhÞ þOðc�4Þ; (6.29)

which is the same statement as Eq. (5.25). The position of
the black hole in the barycenter frame is therefore obtained
simply by evaluating the functions zað�tÞ at the time �t ¼ tbh.
From this observation it follows that the black hole’s
barycentric velocity is vaðtbhÞ, and its acceleration is
aaðtbhÞ. Henceforth we shall omit the label ‘‘bh’’ on the
barycentric time coordinate.
The equations of motion for the black hole, expressed in

the barycentric frame, are obtained from Eq. (6.22) by

replacing the hatted potentials (Ûext and so on) with the
original potentials (Uext and so on) using the correspon-
dence of Eqs. (5.22) and (5.23). Noting that Eq. (6.22) is to
be evaluated at �t ¼ tbh 	 t, we get
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aa ¼ @aUext þ 1

c2
½@a�ext � 4ð@aUb

ext � @bUa
extÞvb

þ 4@tU
a
ext þ ðv2 � 4UextÞ@aUext

� vað4vb@bUext þ 3@tUextÞ� þOðc�4Þ: (6.30)

The external potentials were introduced in Eqs. (4.10),
(4.11), and (4.15), and here they are evaluated at x ¼ zðtÞ
after differentiation. Equation (6.30) applies to a black hole
moving in any post-Newtonian environment. When this
environment consists of ðN � 1Þ external bodies, so that
the black hole is a member of anN-body system, Eq. (6.30)
reduces to the standard (Einstein-Infeld-Hoffman) post-
Newtonian equations of motion. Because this connection
is well understood, we shall not provide here a derivation
of this well-known fact; the Einstein-Infeld-Hoffman equa-
tions are listed, for example, in Exercise 39.15 of Misner,
Thorne, and Wheeler [22].

Following Racine and Flanagan [12] we define barycen-
tric tidal moments EabðtÞ and BabðtÞ that are related to
those of the black-hole frame by the transformation

E abðtÞ :¼ Ma
cð�tÞMb

dð�tÞ �Ecdð�tÞ;
BabðtÞ :¼ Ma

cð�tÞMb
dð�tÞ �Bcdð�tÞ;

(6.31)

where

M abð�tÞ :¼ �ab þ 1

c2
�abcR

cð�tÞ þOðc�4Þ (6.32)

is a post-Newtonian rotation matrix that accounts for the
precession of the moving frame relative to the barycentric
frame. We recall that the time coordinates are related by
t ¼ �tþ c�2Að�tÞ þOðc�4Þ. The quantities Að�tÞ and Rað�tÞ
that appear in the transformation are determined by
Eqs. (6.15) and (6.20), respectively. The inverse transfor-
mation is

�E abð�tÞ ¼ N a
cðtÞN b

dðtÞEcdðtÞ;
�Babð�tÞ ¼ N a

cðtÞN b
dðtÞBcdðtÞ;

(6.33)

where

N abðtÞ :¼ �ab � 1

c2
�abcR

cðtÞ þOðc�4Þ (6.34)

is the inverse to Mab. In these equations we have �t ¼
t� c�2AðtÞ þOðc�4Þ, and the quantities AðtÞ and RaðtÞ
are determined by

dA

dt
¼ 1

2
v2 þUext;

�abc
dRc

dt
¼ �4@½aUext

b� � 3v½a@b�Uext: (6.35)

Expanding Eqs. (6.32) in powers of c�2 produces Eab ¼
�Eab þ c�2½�A@�t �Eab þ 2�cpðaRp �EcbÞ� þOðc�4Þ and

Bab ¼ �Bab þOðc�2Þ. In this we substitute Eqs. (6.25),
(6.26), and (6.27), and we replace the hatted potentials by

the original potentials using the correspondence of
Eqs. (5.22) and (5.23). After simplification we obtain

Eab ¼ �@abUext þ 1

c2
� ð@habi�ext þ 4vcð@abUext

c

� @chaUext
bi Þ � 4@thaUext

bi � 2ðv2 �UextÞ@abUext

þ 3vcvha@bicUext þ 2vha@bitUext

þ 3@haUext@biUextÞþOðc�4Þ (6.36)

and

B ab ¼ 2�pqða@pbÞðUq
ext � vqUextÞ þOðc�2Þ: (6.37)

In these equations the external potentials are evaluated at

x ¼ zðtÞ after differentiation. Notice that unlike �Eab, the
barycentric tidal moment Eab does not involve the func-
tions A and Ra that must be obtained by integrating first-
order differential equations; this was the reason for intro-
ducing the transformation of Eq. (6.32). Notice also that

since �Bab has been worked out to leading-order only, its
transformation to the barycentric frame is trivial.

VII. TIDAL MOMENTS FOR ATWO-BODY
SYSTEM

The results obtained in the preceding section apply to
any post-Newtonian environment described by the external
potentials Uext, U

a
ext, and �ext. Given these potentials, the

motion of the black hole in the barycentric frame ðt; xaÞ is
determined by Eq. (6.30), and the barycentric tidal mo-
ments Eab and Bab are obtained by evaluating Eqs. (6.36)
and (6.37), respectively. The tidal moments perceived by

the black hole are �Eab and �Bab, and these are calculated
using the transformation of Eqs. (6.34), (6.35), and (6.36).
In this section we specialize our discussion to a specific

post-Newtonian environment that consists of a single ex-
ternal body (perhaps another black hole), so that the black
hole is a member of a post-Newtonian two-body system.
Adapting our notation to this specific situation, we let our
original black hole have a massm1, position z1ðtÞ, velocity
v1ðtÞ, acceleration a1ðtÞ, and so on. (These quantities were
previously denoted m, z, v, and a, respectively. Below we
will redefine m to be the system’s total mass m1 þm2, and
v to be the system’s relative velocity v1 � v2.) The second
body also is modeled as a post-Newtonian monopole, and it
has a mass m2, position z2ðtÞ, velocity v2ðtÞ, acceleration
a2ðtÞ, and so on.
In Sec. VII A we list the potentials associated with the

external body, evaluate their derivatives, and calculate the
barycentric tidal moments. In Sec. VII B we simplify our
expressions by writing them in terms of r :¼ z1 � z2, the
relative separation between the two bodies, from which the
individual trajectories can be recovered. In Sec. VII C we
restrict our attention to a binary system in circular motion,
and in Sec. VII D we compute the tidal moments as viewed
in the moving frame of the black hole. Finally, in Sec. VII E
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we compare our post-Newtonian answers to those obtained
by Poisson [14] in the context of the small-hole approxi-
mation (see Sec. I A).

Our calculations in this section rely on well-known
results from post-Newtonian theory. These can be found,
for example, in Blanchet’s review article [40].

A. Two-body potentials and tidal moments

Assuming that the external body is a post-Newtonian
monopole of mass m2, the external potentials can be ex-
pressed in a form that is directly analogous to that of the
black-hole potentials of Eqs. (4.10), (4.11), (4.12), and
(4.13). We have Uext ¼ Gm2=s, U

a
ext ¼ Gm2v

a
2=s,  ext ¼

Gm2
2=s, Xext ¼ Gm2s, and �ext ¼  ext þ 1
2@

2
t Xext,

where s now stands for jx� z2ðtÞj and 
2 :¼ 3
2v

2
2 �

Gm1=jz1 � z2j.
These potentials are easily differentiated, and after

evaluation at x ¼ z1ðtÞ we obtain

Uext ¼ Gm2

r
; (7.1)

@aUext ¼ �Gm2

r2
na; (7.2)

@abUext ¼ Gm2

r3
ð3nanb � �abÞ; (7.3)

@taUext ¼ �Gm2

r3
ð3nanb � �abÞvb2 ; (7.4)

@bU
a
ext ¼ �Gm2v

a
2

r2
nb; (7.5)

@bcU
a
ext ¼ Gm2v

a
2

r3
ð3nbnc � �bcÞ; (7.6)

@tbU
a
ext ¼ �G2m1m2

r4
nanb �Gm2v

a
2

r3
ð3nbnc � �bcÞvc2;

(7.7)

@ab�ext ¼ Gm2

r3

�
2v22 �

Gm1

r

�
ð3nanb � �abÞ

þGm2

2r3
½3ðn � v2Þ2ð�ab � 5nanbÞ

þ 12ðn � v2Þv2ðanbÞ � 2v2av2b�

þG2m1m2

2r4
ð�ab � nanbÞ: (7.8)

We have introduced the new quantities

r :¼ z1 � z2; r :¼ jz1 � z2j; n :¼ r=r: (7.9)

To arrive at Eqs. (7.7) and (7.8) we used the equations of
motion a2 ¼ Gm1n=r

2 þOðc�2Þ to replace the accelera-

tion vector of the second body by its Newtonian
expression.
Making the substitutions into Eqs. (6.36) and (6.37)

gives

Eab ¼ � 3Gm2

r3
nhabi � 3Gm2

c2r3

��
2v21 � 4ðv1 � v2Þ þ 2v22

� 5

2
ðn � v2Þ2 � 5

2

Gm1

r
� 3

Gm2

r

�
nhabi

� ½3ðn � v1Þ � 2ðn � v2Þ�nhav1bi þ ½4ðn � v1Þ
� 2ðn � v2Þ�nhav2bi þ v1hav1bi � 2v1hav2bi

þ v2hav2bi
�
þOðc�4Þ; (7.10)

and

B ab ¼ � 6Gm2

r3
½n� ðv1 � v2Þ�ðanbÞ þOðc�2Þ; (7.11)

where nhabi :¼ nanb � 1
3�ab. The quantities AðtÞ and RaðtÞ

that appear in the transformation from the barycentric
frame to the black-hole frame are determined by the equa-
tions

_A ¼ 1

2
v21 þ

Gm2

r
þOðc�2Þ;

_R ¼ Gm2

2r2
n� ð4v2 � 3v1Þ þOðc�2Þ;

(7.12)

these are obtained from Eqs. (6.36).
It is straightforward to generalize Eqs. (7.10), (7.11), and

(7.12) from a two-body system to an N-body system by
simply writing the external potentials as a sum of single-
body terms. The generalized expressions can then be com-
pared with the corresponding results of Damour, Soffel,
and Xu—see, in particular, Eqs. (4.29)–(4.31) of Ref. [11].
As was already stated in Sec. I B, we find that our expres-
sions agree with theirs.

B. Generic orbital motion

To simplify the foregoing results we incorporate the fact
that the motion of each body in a post-Newtonian two-
body system can be related to the motion of the relative
orbit, which is described by the separation vector r ¼ z1 �
z2 and the relative velocity vector v ¼ v1 � v2. The post-
Newtonian dynamics implies that if the system’s barycen-
ter is placed at the origin of the coordinate system, then
z1 ¼ ðm2=mÞrþOðc�2Þ and z2 ¼ �ðm1=mÞrþOðc�2Þ,
where m :¼ m1 þm2 is the total mass of the two-body
system. As a consequence we also have v1 ¼ ðm2=mÞvþ
Oðc�2Þ and v2 ¼ �ðm1=mÞvþOðc�2Þ, and we make
these substitutions in Eqs. (7.10), (7.11), and (7.12).
In addition we incorporate the fact that the post-

Newtonian motion of a two-body system takes place in a
fixed orbital plane. We take this plane to be the x-y plane,
and we use polar coordinates r and	 to describe the orbital
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motion. We write r ¼ ðr cos	; r sin	; 0Þ, and we resolve
all vectors in the basis n ¼ ðcos	; sin	; 0Þ, � ¼
ð� sin	; cos	; 0Þ, and l ¼ ð0; 0; 1Þ associated with the
polar coordinates; the vector l is normal to the plane, and
it is aligned with the system’s total angular momentum. We
have

r ¼ rn; v ¼ _rnþ ðr _	Þ�; (7.13)

and we also make these substitutions in Eqs. (7.10), (7.11),
and (7.12).

After simplification our results become

Eab ¼ � 3Gm2

r3
nhabi � 3Gm2

c2r3

��
� 3m2

1

2m2
_r2 þ 2ðr _	Þ2

� 5Gm1 þ 6Gm2

2r

�
nhabi

� ð2m1 þm2Þm2

m2
_rðr _	Þnða	bÞ þ ðr _	Þ2	habi

�

þOðc�4Þ; (7.14)

B ab ¼ � 6Gm2

r3
ðr _	ÞlðanbÞ þOðc�2Þ; (7.15)

_A ¼ m2
2

2m2
½ _r2 þ ðr _	Þ2� þGm2

r
þOðc�2Þ; (7.16)

_R a ¼ �Gm2

2r2
4m1 þ 3m2

m
ðr _	Þla þOðc�2Þ: (7.17)

We recall that m ¼ m1 þm2 is the total mass of the
system, r :¼ jz1 � z2j is the interbody distance, 	 is the
angular position of the relative orbit in the orbital plane, n
is a unit vector that points from body 2 to body 1, � is a
unit vector that points in the direction of increasing 	, and
finally, l is the unit normal to the orbital plane. We use the
notation nhabi ¼ nanb � 1

3�ab and 	habi ¼ 	a	b � 1
3�ab.

C. Circular motion

To specialize to circular orbits we set _r ¼ 0 and r _	 ¼ v
in the preceding results. The post-Newtonian equations of
motion imply that

! :¼ _	 ¼
ffiffiffiffiffiffiffiffi
Gm

r3

s �
1� 1

2
ð3� �Þðv=cÞ2 þOðc�4Þ

�
;

(7.18)

where m ¼ m1 þm2 is total mass and � :¼ m1m2=m
2 is a

dimensionless reduced mass. As a consequence of

Eq. (7.18) we find that v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm=r

p þOðc�2Þ. Making
these substitutions in Eqs. (7.14), (7.15), (7.16), and
(7.17) gives

E ab ¼ � 3Gm2

r3

��
1�m1 þ 2m2

2m
ðv=cÞ2

�
nhabi

þ ðv=cÞ2	habi
�
þOðc�4Þ; (7.19)

B ab ¼ � 6Gm2

r3
vlðanbÞ þOðc�2Þ; (7.20)

_A ¼ ð2m1 þ 3m2Þm2

2m2
v2 þOðc�2Þ; (7.21)

_R a ¼ �Gm2

2r2
4m1 þ 3m2

m
vla þOðc�2Þ: (7.22)

For circular orbits we also have 	 ¼ !t, with ! given by
Eq. (7.18).
To list the components of the tidal moments it is useful

to define

E0 :¼ 1
2ðE11 þ E22Þ; E1c :¼ E13; E1s :¼ E23;

E2c :¼ 1
2ðE11 � E22Þ; E2s :¼ E12; (7.23)

and

B0 :¼ 1
2ðB11 þB22Þ; B1c :¼ B13; B1s :¼ B23;

B2c :¼ 1
2ðB11 �B22Þ; B2s :¼ B12: (7.24)

With the vectorial basis n ¼ ðcos	; sin	; 0Þ, � ¼
ð� sin	; cos	; 0Þ, and l ¼ ð0; 0; 1Þ we find that the non-
vanishing components of the tidal moments are

E 0 ¼ �Gm2

2r3

�
1þ m1

2m
ðv=cÞ2 þOðc�4Þ

�
; (7.25)

E2c ¼ � 3Gm2

2r3

�
1� 3m1 þ 4m2

2m
ðv=cÞ2 þOðc�4Þ

�

� cos2	; (7.26)

E2s ¼ � 3Gm2

2r3

�
1� 3m1 þ 4m2

2m
ðv=cÞ2 þOðc�4Þ

�

� sin2	; (7.27)

B 1c ¼ � 3Gm2

r3
v cos	þOðc�2Þ; (7.28)

B 1s ¼ � 3Gm2

r3
v sin	þOðc�2Þ: (7.29)

The components E1c, E1s, B0, B2c, and B2s all vanish for
circular orbits. These results were already displayed in
Sec. I A; in Eqs. (1.10), (1.11), (1.12), (1.13), and (1.14)
we used the symbol b (instead of r) for the interbody
distance, vrel (instead of v) for the relative orbital velocity,
m (instead of m1) for the black-hole mass, and m0 (instead
of m2) for the mass of the external body.
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D. Tidal moments in the black-hole frame

The tidal moments of Eqs. (7.25), (7.26), (7.27), (7.28),
and (7.29) refer to the barycentric frame. We may express
them in the moving frame of the black hole by invoking the
transformation of Eqs. (6.34), (3.35), and (3.36). The trans-
formation involves a switch from global time t to local time
�t, and a rotation of the Cartesian axes mediated by the
vector RðtÞ. According to Eqs. (7.21) the transformation of
the time coordinate is given by

t ¼
�
1þ ð2m1 þ 3m2Þm2

2m2
ðv=cÞ2 þOðc�4Þ

�
�t: (7.30)

And according to Eq. (7.22) we have c�2Ra ¼ �ð��tÞla,
with

� :¼
ffiffiffiffiffiffiffiffi
Gm

r3

s
ð4m1 þ 3m2Þm2

2m2
ðv=cÞ2 þOðc�4Þ (7.31)

denoting the precessional angular velocity of the moving
frame relative to the barycentric frame. (This is the rotation
of the coordinate axes, not the rotational motion of the
black hole on its orbit.) The rotation takes place around the
z axis, and it is easy to show that it is effected by the
transformation 	! �	 ¼ 	���t.

Altogether we find that the tidal moments are given by

�E 0 ¼ �Gm2

2r3

�
1þ m1

2m
ðv=cÞ2 þOðc�4Þ

�
; (7.32)

�E2c ¼ � 3Gm2

2r3

�
1� 3m1 þ 4m2

2m
ðv=cÞ2 þOðc�4Þ

�

� cos2 �	; (7.33)

�E2s ¼ � 3Gm2

2r3

�
1� 3m1 þ 4m2

2m
ðv=cÞ2 þOðc�4Þ

�

� sin2 �	; (7.34)

�B 1c ¼ � 3Gm2

r3
v cos �	þOðc�2Þ; (7.35)

�B 1s ¼ � 3Gm2

r3
v sin �	þOðc�2Þ; (7.36)

in the moving frame. Tensorial expressions for �Eab and �Bab

can be obtained directly from Eqs. (7.19) and (7.20) by
making the substitution 	! �	. After involvement of
Eqs. (7.18), (7.30), and (7.31) we find that �	 ¼ �! �t , with

�! ¼
ffiffiffiffiffiffiffiffi
Gm

r3

s �
1� 1

2
ð3þ �Þðv=cÞ2 þOðc�4Þ

�
: (7.37)

This is the angular frequency of the tidal moments as
measured in the moving frame of the black hole. The
transformation from ! to �! involves a switch from bary-
center time to local proper time, and a rotation of the local
accelerated frame relative to the global inertial frame.

Notice the change in sign in front of � :¼ m1m2=m
2

between Eqs. (7.18) and (7.37).

E. Comparison with Schwarzschild tidal fields

The tidal moments of a black hole of small mass m1

moving in the gravitational field of another black hole of
large mass m2 can be obtained simply by evaluating the
components of the Riemann tensor for the large black hole;
the Riemann tensor is evaluated in the moving frame of the
small black hole. The details of such a computation are
presented in Poisson [14], and in this subsection we com-
pare our results. Poisson uses different definitions for the
harmonic components of the tidal moments, and his results
are presented in Schwarzschild coordinates. With the con-
ventions adopted here, in relativist’s units, and in harmonic
coordinates, Poisson’s results are

�E 0 ¼ � m2

2ðrþm2Þ2ðr� 2m2Þ
;

�E2c ¼ � 3m2

2ðrþm2Þ3
r�m2

r� 2m2

cos2 �	;

�E2s ¼ � 3m2

2ðrþm2Þ3
r�m2

r� 2m2

sin2 �	;

�B1c ¼ � 3m3=2
2

ðrþm2Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�m2

p
r� 2m2

cos �	;

�B1s ¼ � 3m3=2
2

ðrþm2Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�m2

p
r� 2m2

sin �	;

where �	 ¼ �! �t , with

�! ¼ m2

ðrþm2Þ3
:

Here, r is the orbital radius of the small black hole (in
harmonic coordinates), and �t is proper time on the circular
orbit.
It is easy to check that when ðv=cÞ2 :¼ m2=r� 1, the

Schwarzschild expressions reduce to Eqs. (7.32), (7.33),
(7.34), (7.35), (7.36), and (7.37) when m1 � m2; in this
limit m ’ m2 and � ’ 0. In their common domain of
validity, our results agree with those of Poisson.

VIII. GEOMETRY OF THE EVENT HORIZON

In this section we present an application of the results
obtained in Sec. VII. We examine, in a particular gauge, the
intrinsic geometry of the event horizon of a tidally-
deformed black hole. We emphasize that the discussion
presented here is tied to a specific choice of gauge; a
different slicing of the event horizon would produce a
different intrinsic geometry.
The harmonic coordinates ð�t; �xaÞ are singular on the

black-hole horizon, and an examination of its geometry
requires a change of coordinates. For this purpose we
return to the light-cone coordinates ðv; �; �AÞ of
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Sec. III B. It is known [18] that in the light-cone gauge, the
coordinate description of the event horizon is � ¼ 2M1 ¼
2Gm1=c

2, the same as in the unperturbed Schwarzschild
geometry. Equations (3.10), (3.11), (3.12), and (3.13) then
imply that the induced metric on the event horizon is given
by gAB ¼ ð2M1Þ2�AB þ hAB þOðM5

1R
�2L�1Þ, where

�AB is the metric on the unit two-sphere, and

hAB ¼ �1
6ð2M1Þ4ðEq

AB þBq
ABÞ (8.1)

is the tidal perturbation. Here Eq
AB and Bq

AB are the tidal
potentials defined in Eqs. (3.16) and (3.18), respectively.
As in Sec. III B, we (momentarily) refrain from displaying
the factors of c as well as the overbar.

To simplify the horizon metric we implement a gauge
transformation generated by the vector field

�A ¼ �1
6ð2M1Þ4ðEq

A þBq
AÞ; (8.2)

where Eq
A and Bq

A are introduced in Eqs. (3.15) and (3.17),

respectively. The transformation changes the metric per-
turbation according to hAB ! h0AB ¼ hAB �DA�B �
DB�A, where DA is the covariant-derivative operator com-
patible with �AB. Using the relations DAE

q
B ¼ DBE

q
A ¼

1
2 E

q
AB � 3

2�ABEq and DAB
q
B þDBB

q
A ¼ Bq

AB, we find that

the new perturbation is given by

h0AB ¼ �1
2ð2M1Þ4�ABEq; (8.3)

where Eq is defined by Eq. (3.14).
Reinstating the factors of c and the overbar on the tidal

moments (to emphasize that we are working in the black
hole’s comoving frame), we find that the induced metric on
the black-hole horizon is given by

gAB ¼ ð2M1Þ2
�
1� ð2M1Þ2

2c2
�Eab�a�b

�
�AB þO

�
M5

1

R2L

�
(8.4)

in this choice of gauge. The line element on the horizon is

ds2 ¼ ð2M1Þ2
�
1� ð2M1Þ2

2c2
�Eab�a�b

�
ðd�2 þ sin2�d	2Þ

þO

�
M5

1

R2L

�
; (8.5)

and �a ¼ ðsin� cos	; sin� sin	; cos�Þ is the unit radial
vector. According to these equations, the area of each cross
section v ¼ const of the event horizon is given by A ¼
4
ð2M1Þ2, so that 2M1 is the radius averaged over each
cross section.

The metric of Eqs. (8.4) and (8.5) can be reproduced by
embedding a closed two-surface described by

r ¼ 2M1½1þ "ð�;	Þ� (8.6)

in a flat, three-dimensional space charted by spherical
coordinates ðr; �;	Þ. Working consistently to the first or-
der in ", we find that the metric on this two-surface is given
by ds2 ¼ ð2M1Þ2ð1þ 2"Þðd�2 þ sin2�d	2Þ, and this

agrees with Eq. (8.5) when

"ð�;	Þ ¼ �M2
1

c2
�Eab�a�b: (8.7)

This equation evidently describes a quadrupole deforma-
tion of a round two-sphere of radius 2M1. To the first order
in ", the deformation produces no change in area.
So far our considerations have been limited only by the

restriction M1 � R, which ensures that the tidal pertur-
bation is small. As was discussed in Sec. I A, this restric-
tion includes both the small-hole and weak-field
approximations as limiting cases. If we now restrict our
attention to the weak-field approximation and place the
black hole within a post-Newtonian environment, then the

tidal moments �Eab can be imported from Sec. VID and
substituted within Eq. (8.7). To illustrate this, we restrict
our attention further to the situation examined in
Sec. VII C, in which the black hole is a member of a
two-body system in circular motion. The relevant tidal
moments are listed in Eqs. (7.32), (7.33), and (7.34), and
when these are inserted within Eq. (8.7), we obtain

" ¼ M2
1M2

2b3

�
1þ M1

2M
ðvrel=cÞ2 þOðc�4Þ

�
ð1� 3cos2�Þ

þ 3M2
1M2

2b3

�
1� 3M1 þ 4M2

2M
ðvrel=cÞ2

þOðc�4Þ
�
sin2� cos2 : (8.8)

Here M1 :¼ Gm1=c
2 is the black hole’s gravitational ra-

dius, and M2 :¼ Gm2=c
2 measures the mass of the com-

panion body. We use the same notation as in Sec. I B: b is
the separation between the two bodies (in harmonic coor-
dinates), M :¼ M1 þM2 is a measure of the total mass

within the system, and vrel ¼ c
ffiffiffiffiffiffiffiffiffiffi
M=b

p
is the relative orbital

velocity. The symbol  stands for 	� �!v, where v is the
advanced-time coordinate on the event horizon and �! is the
orbital frequency of Eq. (7.37).
Equation (8.8) implies that the event horizon is bulging

along an axis directed toward the orbiting body. To see this
clearly, we calculate from the metric the circumference of a
line of longitude  ¼ constant, and we obtain

Cl ¼ 2
ð2M1Þ
�
1�M2

1M2

4b3

�
1þ M1

2M
ðvrel=cÞ2 þOðc�4Þ

�

þ 3M2
1M2

4b3

�
1� 3M1 þ 4M2

2M
ðvrel=cÞ2 þOðc�4Þ

�

� cos2 

�
: (8.9)

This equation reveals that the circumference is largest
(stretched) when  ¼ f0; 
g and smallest (squeezed)
when  ¼ f
2 ; 3
2 g. We also calculate the circumference

of the equator (at � ¼ 

2 ) and obtain
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Ce ¼ 2
ð2M1Þ
�
1þM2

1M2

2b3

�
1þM1

2M
ðvrel=cÞ2 þOðc�4Þ

��
:

(8.10)

This equation also reveals a bulging of the horizon at the
equator.

IX. TIDAL HEATING

In this final section, we present another application of
the results obtained in Sec. VII. We calculate the tidal
heating of a black hole of mass m1 placed in a post-
Newtonian tidal environment created by an external body
of mass m2. For simplicity, we restrict our attention to
circular motion. These results, unlike those presented in
Sec. VIII, are gauge-invariant. In Sec. IXA we calculate
the tidal heating of a nonrotating black hole, and in
Sec. IXB we examine the case of a rotating black hole.
The foundations for this calculation are given in Ref. [30].

A. Nonrotating black hole

The rate at which a black hole of massm1 acquires mass
by tidal heating is given by [30]

G _m1 ¼ 16

45

ðGm1Þ6
c15

�
_�Eab

_�Eab þ 1

c2
_�Bab

_�B
ab þOðc�4Þ

�
;

(9.1)

in which an overdot indicates differentiation with respect
to �t. This equation excludes contributions from octupole
and higher-order tidal moments—see Ref. [18]. It is easy to
show, however, that these contributions occur at order c�4

(and smaller) relative to the dominant, quadrupole term;
they are therefore included in the neglected terms of
Eq. (9.1).

According to our results in Sec. VII D, the tidal moments
are given by

�E ab ¼ � 3Gm2

r3

��
1�m1 þ 2m2

2m
ðv=cÞ2

�
�nhabi

þ ðv=cÞ2 �	habi
�
þOðc�4Þ; (9.2)

�B ab ¼ � 6Gm2

r3
v�lða �nbÞ þOðc�2Þ (9.3)

in the black-hole frame. Here �na ¼ ðcos �	; sin �	; 0Þ, �	a ¼
ð� sin �	; cos �	; 0Þ, and �la ¼ ð0; 0; 1Þ, with �	 ¼ �! �t ; the
angular frequency �! is displayed in Eq. (7.37). The time
derivatives of the basis vectors are given by _�na ¼ �! �	a,
_�	a ¼ � �! �na, and _�la ¼ 0; this gives rise to _�nhabi ¼
2 �! �nða �	bÞ and _�	habi ¼ �2 �! �nða �	bÞ.

Evaluating Eq. (9.1) from Eqs. (9.2) and (9.3) produces

G _m1 ¼ 32

5c15
m6

1m
2
2

m8

�
Gm

r

�
9
�
1� 5m2

1 þ 12m1m2 þ 6m2
2

m2

� ðv=cÞ2 þOðc�4Þ
�
; (9.4)

where m ¼ m1 þm2 is the total mass, r is the orbital

separation (in harmonic coordinates), and v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm=r

p
is

the relative orbital velocity. The rate at which the tidal
coupling increases the black hole’s angular momentum can
next be obtained from the rigid-rotation relation _m1c

2 ¼
�! _J1. Equation (9.4) was already displayed in Sec. I B; in
Eq. (1.17) we used the symbol b (instead of r) for the
orbital separation, vrel (instead of v) for the relative orbital
velocity, m (instead of m1) for the black-hole mass, and m0
(instead of m2) for the mass of the external body.
Equation (9.4) can be compared with the result obtained

by Poisson [30] for a black hole of small mass m1 moving
in the field of another black hole of large mass m2. In
geometrized units, and in harmonic coordinates, Poisson’s
result is

_m 1 ¼ 32

5

�
m1

m2

�
6
�
m2

r

�
9 1�m2=r

ð1þm2=rÞ9ð1� 2m2=rÞ2
:

When m2=r ¼ ðv=cÞ2 is small the relativistic factor be-
comes 1� 6ðv=cÞ2 þOðc�4Þ, and this expression agrees
with Eq. (9.4) when m1 � m2.

B. Rotating black hole

We next calculate the tidal heating of a rotating black
hole, assuming that the tidal fields are not affected (at the
first post-Newtonian order) when the nonrotating black
hole is replaced by a rapidly rotating hole. The rate at
which the hole’s angular momentum is increased by the
tidal coupling is given by [30]

G _J1 ¼ � 2

45

ðGm1Þ5
c10

�½8ð1þ 3�2ÞðE1 þ c�2B1Þ
� 3ð4þ 17�2ÞðE2 þ c�2B2Þ þ 15�2ðE3 þ c�2B3Þ
þOðc�4Þ�; (9.5)

where � :¼ cJ1=ðGm2
1Þ is a dimensionless angular-

momentum parameter that ranges between 0 and 1, and

E1 :¼ �Eab �E
ab, E2 :¼ ð �EabsbÞð �EacscÞ, E3 :¼ ð �EabsasbÞ2,

B1 :¼ �Bab
�Bab, B2 :¼ ð �Babs

bÞð �Ba
cs
cÞ, B3 :¼ ð �Babs

asbÞ2.
Here, the unit vector sa points in the direction of the hole’s
spin angular-momentum vector, so that J1 ¼ J1s. In this
application, the spin and orbital angular momenta are
aligned or antialigned, so that sa ¼ �la with � ¼ 
1.
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Evaluation of Eq. (9.5) produces

G _J1 ¼ � 8

5
�ð1þ 3�2Þm

5
1m

2
2

m7

ðGmÞ7
c10r6

�
1�

�
8þ 39�2

4þ 12�2

m1

m

þ 12þ 51�2

4þ 12�2

m2

m

�
ðv=cÞ2 þOðc�4Þ

�
; (9.6)

where m ¼ m1 þm2 is the total mass, r the orbital sepa-

ration (in harmonic coordinates), and v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm=r

p
is the

orbital velocity. The rate at which the black-hole mass
changes as a result of tidal heating can next be obtained
from the rigid-rotation relation _m1c

2 ¼ �! _J1. With
Eq. (7.37) we get

G _m1 ¼ � 8�

5c12
�ð1þ 3�2Þm

5
1m

2
2

m7

�
Gm

r

�
15=2

�
�
1�

�
14þ 57�2

4þ 12�2

m2
1

m2
þ 34þ 132�2

4þ 12�2

m1m2

m2

þ 18þ 69�2

4þ 12�2

m2
2

m2

�
ðv=cÞ2 þOðc�4Þ

�
; (9.7)

where the parameter � ¼ 
1was previously defined by the
relation sa ¼ �la. Thus, the black hole loses masswhen the
orbital motion proceeds in the same direction as the spin-
ning motion (� ¼ 1), and it gains mass when the orbital
motion proceeds in the opposite direction (� ¼ �1). In
each case the orbital motion is slower than the spinning
motion, and the black hole always loses angular
momentum.

Equation (9.7) can be compared with the result obtained
by Poisson [30] for a rotating black hole of small mass m1

moving in the field of a nonrotating black hole of large
mass m2. In geometrized units, and in harmonic coordi-
nates, Poisson’s result is

_m 1 ¼ � 8�

5
�ð1þ 3�2Þ

�
m1

m2

�
5
�
m2

r

�
15=2

�
ð1�m2=rÞð1� 15�2

4þ12�2m2=rÞ
ð1þm2=rÞ15=2ð1� 2m2=rÞ2

:

When m2=r ¼ ðv=cÞ2 is small the relativistic factor be-
comes

1� 18þ 69�2

4þ 12�2
ðv=cÞ2 þOðc�4Þ;

and this expression agrees with Eq. (9.7) when m1 � m2.
The same conclusion holds when the small black hole
moves in the field of a large rotating black hole. In this
situation, the error term in the previous expression is of
order c�3 instead of order c�4.
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